

 \| ‘TechnicalUpdate

Subject: PRIMOS FILE SYSTEM, REV. 13 Number° 39

Revision: g

Date: May 1976

Applicable Hardware: All CPU's

Applicable Software: PRIMOS III and IV, Rev. 13

Documentation Impact: Supplements MAN2604

Abstract:

A number of new features have been introduced into the file system for

REV. 13 of PRIMOS III and PRIMOS IV. Among these changes are

32-character filenames, fully indexed DAM files, multi-record UFDs, and

a new set of file system subroutines thet support the new capabilities.

The new file system facilities ere introduced on a partition basis,

that is, a disk partition is either “old" or "new", but not a mixture

of old and new files. All existing programs that use the file system

will continue to run on old partitions and, with certain restrictions

noted herein, on new partitions.

Part 1 of this document details the new file system features, describes

the new file system CALLs, and gives program examples of how the new

file system is used.

Part 2 describes thenewfunctionsof the FUTILEfileutility.

This bulletin is one in a series of documentation supplements that supply current information on Prime hardware, software and docu-
mentation products. Prime Technical Updates introduce product improvements andrevisions, and update existing Prime Computer
user documentation.

PRIME Computer, Inc. 145 Pennsylvania Avenue, Framingham, Mass. 01701/(617) 879-2960
P/N PTU-3065

1.2

— e t
w

1.7

1.8

REV.

CONTENTS

Part 1 Rev. 13 File System Changes

INTRODUCTION... ccc c ccc cece cece ccs cece ses e ces ecsccccsesscseceeld

1.1.1 MOTIVATION..... acc ccc cece cece cece eee weenees ee cecee eecceel
1.1.2 COMPATIBILITY OF OLD AND NEW PARTITIONS. cacccccceere|

1.1.2 PRIMCS SUPPORT FOR NEW FILE SYSTEM... 2... cee eee c cece eeeeeed
1.1.4 PRIMOS II AND III CONSIDERATIONS......... ec cecccce seeveseed

OVERVIEW OF NEW FILE SYSTEM FEATURES........26. ccc c cece cc ccc scenes

1.2.1 NEW FILE CHARACTERISTICS... cc ccccc ccc ccc ccc ccccccccescccces

1.2.2 NEW UFD CHARACTERISTICS0e0e- wc cec cece rece cc ences 4
1.2.3 NEW SEGMENT DIRECTORIES... . 0... ccc cc cece cece cw wc ec ceceeeed

NEW FILE SYSTEM SUBROUTINES... ..ccececccs ccm e eww cece a ccccees 225
1.3.1 NOTES ON SUBROUTINE DESCRIPTIONS ccc cece cece cccccccces 5
1.3.2 KEY DEFINITIONS FOR NEW FILE SYSTEM CALLS...... ec cccccccce 5

1.2.3 NEW ERROR HANDLING CONVENTIONSceee0. eececee cece cee eb

1.3.4 SUBROUTINE DESCRIPTIONS.......0.- eeceeeara7
1.3.5 ERROR CODE SUMMARY...... wee c eee w cece seeeee ccc c ccc n wees 40
NEW FILE SYSTEM KEY AND ERRCR DEFINITIONS...... occ cwcee ecccccee &Z

1.4.1] KEYS.F -- FILE SYSTEM KEY DEFINITIONS... 0... ccc cee ccc cee 042

1.4.2 ERRD.F -- ERROR RETURN CODE DEFINITIOCNS....... woe e cece 045

NEW FILE SYSTEM ERROR HANDLING CONVENTIONSccceeee eee ccce ee ed
1.5.1 MOTIVATION. 2. ccc cece cece ccc ccc ccc c cscs cceccccceces 000 47
1.5.2 THE RETURN CODE PARAMEFTER...... ec ccecccccen wee cc cece eee e4/

1.5.2 STANDARD SYSTEM ERROR CODE DEFINITIONS.....cccccees 0000 48

1.5.4 NEW ERROR HANDLING ROUTINE... ...cccccccccsccccccce eeceeee 42
THE ROUNCE PACKAGE .. cc cc ccc cc cc ccc cc ccce ecesescescovecce cece cceee Dl

1.6.1] FUNCTIONALITY.4. ccc c cece cece cccccns onc ceeeee ooeedl
1.6.2 BOUNCE PACKAGE IMPLEMENTATION RESTRICTIONS oo. cseeeeeee 05]

1.6.3 LOADING THE BOUNCE PACKAGE... ..cccccccccccccces eee cece ee DL

SAMPLE PROGRAMS... . cece nce cece cc cece sect e tee e eee sescesssesees253

1.7.1 WRITE SAM FILES....... eo eccccccenes cccees ec cceccccce wee ed

1.7.2 WRITE DAME FILE......... Se ccc cece cc eee ccc s ccc cessccces 255

1.7.3 READ A SAM OCR DAM FILE....... acc eer ecccenewe ccece eccesee sD

1.7.4 CREATE A SEGMENT DIRECTORY...... ce cccccsascce es cccces 200009

1.7.5 READ A LOGICAL RECORD FROM A FILE........- woe wcccces 0005 002

1.7.6 Read File in Segment Directory........ cece acces occ e eee - 2-65
INTERNAL FILE SYSTEM FORMATS... ..cccccccccccccs eeeeee oe ecco ee 008
1.8.1] DSKRAT FORMATS ccc ccc c cc ccc cece ce ceee occ ccc scccces - 68
1.8.2 RECORD HEADER FORMATS... ..ccccccccccccccccccccces e000 0 0 008

1.8.2 UFD HEADER AND ENTRY FORMATS... . cece ccccccccccccccccces 76

1.8.4 SEGMENT DIRECTORY FORMATS........ oe cceee eer c ccc ecccsce cell
1.8.5 DAM FILE ORGANIZATION........ cows poe ar ccc cccccccencccas 72

g@ May 1976

CONTENTS

Part 2 FUTIL, Rev. 12 and 13

2.1 INTRODUCTION. 0... cece cece wees cc ccc cece ccc c cece cncccccccscssssesl

2.2 NAMING CONVENTIONS...... eee e cece cence ccc rece cceecceccseseeele

2.3 DESCRIPTION OF FUTIL COMMANDSc cc cccccccccccccccesceseceecdl

2.4
2.5

RESTRICTIONS... cece eeeensee eee c cece ccc ccc cence ccc cccceeseede

ERROR MESSAGES eonxrnaese eee c cect cece cca c ence ccc cccccsseeessseseeds

REV. @ Mey 1976

PTU3O PART 1 PRIMOS FILE SYSTEM, REV. 132

PART]

REV. 13 FILE SYSTEM CHANGES

1.1 INTRODUCTION

1.1.1] MOTIVATION

The REV. 12 file system represents the first step in an evolutionery

process in which the capabilities of the current file system are to be

greatly upgraded and expanded. The new capabilities at REV. 13

include 32Z-character filenames, longer files and UFDs, dete/time

stamping, new error handling, and more secure handling of segment

Girectories and UFDs. The design of the new file system has been

guided by three principles:

1) Whenever possible, existing user programs should continue to work

on the new file system without modifications.

2) The internal formats and functionelity of the new file system

should allow future expansion without affecting programs using

the new file system. Program efficiency should not be penalized

by the introduction of rarely used features.

3) Requirements for accessing end modifying existing file structures

are more stringent. Access rights are carefully observed, and

UFD and segment directory modification is more controlled.

1.1.2 COMPATIBILITY OF CLD AND NEW PARTITIONS

It should be stressed that the distinction between old anc new file

system features is on a partition basis. A partition is either in the

old format or in the new format, never a mixture of the two. The

following comments apply to the interaction of old/new CALLs on old/new

partitions.

OLD CALLS ON OLD PARTITIONS: Existing progrems and new progrems

that use the old file system calls will continue to work without

modification on old partitions.

OLD CALLS ON NEW PARTITIONS: Existing programs will continue to

work on new partitions with the following exceptions: PRWFIL can

no longer be used in any way on directories (UFDS or segment

directories). SEARCH can not be used to delete a non-empty

directory. Segment directories cen no longer have UFD

subentries. There are certain new restrictions on filenames in

new partitions (see Section 1.2.1.1).

REV. @ (
a
d

&
S ! b
e May 1976

PIUZ0 PART] PRIMOS FILE SYSTEM, REV. 12

NEW CALLS ON OLD PARTITIONS: Progrems using the new file systemcells will work correctly on old partitions. Certéin error caseswill, of course, arise when trying to perform e function onlySupported by a new partition Any filename specified as longerthen six characters is truncated to six charecters when runningon an old partition.

NEW CALLS ON NEW PARTITIONS: All functions described in thisdocument will work on new partitions.

Note also that using the new file system, it is still possible to runwith write-protected disks.

1.1.3 PRIMOS SUPPORT FOR NEW FILE SYSTEM

At REV. 13, all utilities support the new file system. Certeincommends cannot take a filename longer than six characters. These are
AVAIL, BASINP, CNVIMA, CRPMC, CRSER, CX, EDB, FILVER, MCG, NUMBER,
PRMPC, PRSER, PRVER, PUSS, TRAMLC, UPCASE.

1.1.4 PRIMOS II AND III CONSIDERATIONS

New file system calls new partitions are not supported by PRIMOS II.In addition, new file system calls are not Supportec by PRINET on cellsto access remote disks. ‘To Support calls in these situations, apackage -- the BOUNCE package ~- is available that will "bounce" thenew cells back to user space where they will be transformed into aSeries of old calls that are understood by PRIMOS II. In some cases(noted below), file unit 16 is used by the bounce package. In others,such es GPASSS ane SATRS$, the current UFD is Opened by the bouncepackage. The bounce package is described in Section 1.6.

REV. @

t
a
d

@ ~ 2 May 1976

PTUSE PART 1 PRIMOS FILE SYSTEM, REV. 13

1.2 OVERVIEW OF NEW FILE SYSTEM FEATURES

1.2.] NEW FILE CHARACTERISTICS

].2.1.1 New File Names

New filenames can be up to 22 characters long, the first character of
which must not be numeric (@-9). Filenames can be composed only of the

following cheracters:

A-Z @-9 #S8&*-./

If any lower case characters are specified, the are forced to upper
case. No control characters (@ - :237) are allowed in new file names.
In the new file system calls, file names are, as before, ASCII packed
two characters per word. If the name length specified in a call is
longer than the actual length of the name, the name must be followed by
a number of treiling blanks sufficient to match the given lencth.

1.2.1.2 Date/Time Stamping

There is a new field in a file’s UFD entry that records the date and
time when the file was last modified. This field is updated when a
file is closed and:

1) An old file has been opened for KSWRIT or KSRDWK and a_ write
operation has been performed.

2) A new file has been created.

(Note: the decision to use "last mocified" rather than "last used" was

to allow the use of write-—protected disks.)

1.2.1.3 Unlimited Partition and File Size

On old partitions, the number of records in a file anc the number of
records ina partition are limited to 65536. The number of records in
a new file or partition is now effectively unlimited end can fill any
physical storege device supported by PRIMOS. A storage module disk

partition containing more than 8 heads must be a new partition.

=

REV. @ 28 - 3 May 1976

PTUs PART] PRIMOS FILE SYSTEM, REV. 12

1.2.1.4 Fully Indexed DAM Files

Formerly, when the index of a DAM file overflowed one record (1824
entries for a storege module, 446 entries for all other disks), access
became sequential. In new DAM files, a multi-level index is maintained
so thet any record in the file can be Girectly accessed. With the
exception of improved access time, this difference is invisible to user
programs. (More details on the new DAM orgenization ere given in
Section 1.8.5.)

1.2.2 NEW UFD CHARACTERISTICS

1.2.2.1 Multi-Recorc UFDs

UFDS, formerly restricted to a single record, can now span multiple
records. ‘The limit of no more then 72 files (169 on a storage module)
in a single UFD no longer holds. (The UFD FULL messege will never he
generated.)

1.2.2.2 Hidden Internal Format

It is no longer possible to read end write a UFD uSing PRWFIL (or the
new PRWFSS). Indeed, there ig no need for a progrem to know the
internal format of a UFD. Progrems are therefore protected from future
changes to the file system. ‘The new way in which UFEs are read is
deteiled under the description of the RDENSS subroutine in Section 1.2.

1.2.2.3 Special File Identification

UFD entries now include an identification of "special" files -- files
having unicue use in the file system and not normally accessed by the
user. These files are BCOT, DSKRAT, BADSPT, and MFD.

REV. & 30 - 4 Mey 1976

Use PART] PRIMCS FILE SYSTEM, REV. 12

r + C
1.2.2 NEW SEGMENT DIRECTORIES

1.2.3.1 New Entry Identification

Entries in a seament directory are no longer identified by a

<record-number, word-number> pair, but by a single entry number from @

to 65535. This means that segment directories are now limited in size

to 65536 entries (@ - :177777).

1.2.3.2 Segment Directory Hendling

It is nc longer possible to reed and write segment Girectories using

PRWFIL (or the new PRWFSS). A new subroutine -- SGDRS$ -- is provided

for the examination and modification of segment directory entries.

1.2.3.2 Segment Directory Restriction

A UFD entry in a segment directory is now illegal. The only filetypes

allowed in a segment directory are SAM, DAM, and other segment

directories. This restriction applies to both new and old partitions.

1.3 NEW FILE SYSTEM SUBROULTINES

1.2.1 NOTES ON SUBRCUTINE DESCRIPTIONS

For each subroutine ea complete description of the parameters is given,

followed by notes on usage, brief examples of calls, and notes on

compatibility with old file system functions. Error return codes are

summerized in a table following the subroutine descriptions.

Section 1.7 illustrates use of the subroutines with more complete

sample programs. Throughout, it is assumed that the reader is familiar

with the old file system capabilities as described, for example, in the

PRIMOS III or IV User “Ss Guide (MAN2604).

1.2.2 KEY DEFINITIONS FOR NEW FILE SYSTEM CALLS

All keys and errer codes are specified in symbolic, rather than

numeric, form. ‘These symbolic names ere defined as PARAMETERS (for

FORTRAN programs) and EQUs (for PMA programs) in SINSERT files present

in a new UFD on the master disk called SYSCOM. The key definition

files are named KEYS.F for FORTRAN and KEYS.P for PMA. The error

definition files are ERRD.F and ERRD.P. For convenience in recognizing

old file system keys, a listing of these files are included in Section

1.4. The user is urged to use these symbolic names.

REV. @ 36 - 5 May 1976

PTUSE PART] PRIMOS FILE SYSTEM, REV. 12

1.3.2 NEW ERROR HANDLING CONVENTIONS

All alternéte return parameters (ALTRIN) have been repleced with CODE
~~ an integer return code variable. This is part of the new error
handling protocol, which is completely described in Section 1.5.

REV. 30 - 6 May 1976

PTU=@ PART 1 PRIMOS FILE SYSTEM, REV. 1:

1.2.4 SUBROUTINE DESCRIPTIONS

1.3.4.1 ATCHSS -- Attach to UFD

Function

Attach to a UFD and optionally meke it the home UFD.

Calling Sequence

CALL ATCHS$$ (UFDNAM ,NAMLEN, LDISK, PASSWD , KEY , CODE)

Parameters

UFDNAM The name cf the UFD to be attached to. If KEY=@ end UFCNAM

is the key KSHOME the home UFD is attached.

NAMLEN The length in characters of UFDNAM. NAMLEN mey be greeter

than the actuel length of UFDNAM if UFDNAM is padded with the

appropriate number of blanks. If UFDNAM=KSHOME, NAMLEN is

disregarded.

LDISK The number of the logical disk to be searched for UFDNAM when

KEY=KSIMFD. Other values are:

KSALLD--Search all started-up logical devices.

KSCURR--Search the MFD of the Gisk currently attached.

PASSWD A three-word array containing one of the passwords of UFDNAM.

Can be specified as § if attaching to the home UFD.

KEY A reference value es follows:

KSIMFD--Attach to UFDNAM in MFD on LDISK.

KSICUR--Attach to UFDNAM in current UFD (UFDNAM is a

subdirectory) .

To these two keys mey be added KSSETH, ¢.9., KSIMFD+KSSETH,

which will set the current UFD to the home UFD efter

atteching.

REV. @ 3¢ - 7 May 1976

PTU2@ PART] PRIMOS FILE SYSTEM, REV.]2

CODE An integer veriable set to the return code.

Notes on USage

A EAD PASSWD errer is not returned to the users program. Command
level is entered, and the user is left attached to no UFD. Othererrors leeve the attach point unchanged.

Examples

1) Attach to home UFD:

CALL ATCHSS (KSHOME ,@,@,@,6,CCDE)

2) Attach to UFD named ‘G.S.PATION’, password ‘CHARGE’ in current UFC:

CALL ATCHSS (‘G.S. PATTON *,16,KSCURR, “CHARGE “ ,KSICUR, CODE)

Compatibility

ATCHS$ is ecuivelent to ATTACH with the addition of support for longer
names.

REV. 6 38 - 8 fay 1976

PTU2¢ PART] PRIMOS FILE SYSTEM, REV. 13

1.3.4.2 COMISS -- Switch Command Input Stream

Function

COMISS is used to switch the command input stream from the terminal to

é command file, or from e command file to the terminal.

Calling Secuence

CALL COMISS (NAME, NAMLEN, FUNIT, CODE)

Perameters

NAME The name of the file to switch the commend input streem. If

NAME is ‘TTY’, the commend stream is switched back to the

terminal and FUNIT is closed. if NAME is ‘PAUSE’, the

command stream is switched tc the terminal but FUNIT is not

closed. If NAME is ‘CONINUE’, the command streem is switched
to the file alreacy open on FUNIT.

NAMLEN The length in cheracters of NAME.

FUNIT The file unit on which to open the command file specified by
NAME. Normally, file unit six is used.

CODE An integer variable set to the return code.

Compatibility

COMISS has the same function as COMINP extended for long names. COMISS

works on both new end old partitions. Note that neither COMINP nor

COMIS$S currently works ecross the PRIMENET.

REV. @ (
a
)

&

} o
O May 1976

PTU26 PART] PRIMCS FILE SYSTEM, REV. 12

1.3.4.3 CREASS -- Create a New UFD in the Current UFD

Function

CREASS creates a new UFD (@ SUBUFD) in the current UFD and initializes
the new UFD entry. It replaces the former SEARCH NEWUFD Subkey, used
to create new UFDS on an old partition.

Calling Sequence

CALL CREASS (NAME,NAMLEN,OPASS ,NPASS , CODE)

Parameters

NAME The name to be given the new UFD.

NAMLEN The length in characters of NAME.

OPASS A three-word array containing the owner password for the new
UFD. If OPASS(1)=6, the owner password is set to blenks.

NPASS A three-word array containing the non-owner password for the
new UFD. If NPASS(1)=@ the non-owner password is set to @‘s.
Any pessword given to ATTACH or ATCHSS will match a non-owner
password of @’s.

CODE An integer variable to be set to the return code from CREASS.

Notes on Usage

Passwords can be at most 6 characters long. Passwords less than 6
characters must be padded with blanks for the remaining characters.
Passwords are not restricted by filename conventions and May contain
any cheracters or bit patterns. It is strongly recommended that
passwords not contain blanks, commas, Or the characters
=,!,°,@,{,},[,]+(,) Or lowercase characters. Passwords should not
start with a digit. If passwords contain any of the above cheracters
Or begin with a digit, the passwords may not be given on a PRIMOS
command line to the ATTACH command. line to the ATTACE command.

Since the new SEARCH, SRCHSS, will not allow creation of a new UFD,
CREAS$ must be used for this purpose.

REV. & 30 - 18 May 1976

PTU30 PART 1] PRIMOS FILE SYSTEM, REV. 13

CREASS requires owner-rights on the current UFD.

If the bounce package is invokec (see Section 6), file unit 16 is used

@uring the create. Unit 16 shoule not be open when CREASS is celled.

Examples

1) Create new UFD with default passwords of ° ‘ for owner anc 3%*¢

for non-owner:

CALL CREASS (‘NEWUFD “,6,6,@,CODE)

Compatibility

CREASS has no corresponding old file system subroutine. CREATS works

on both old and new partitions.

REV. 0 38 - ll May 1976

PTUZ0 PART 1] PRIMOS FILE SYSTEM, KEV. 12

1.3.4.4 CNAMSS ~- Change a Filename

Function

CNAMSS is used to change the name of a file in the current ufd.

Calling Sequence

CALL CNAMSS (OLDNAM ,OLDLEN, NEWNAM ,NEWLEN, CODE)

Parareters

CLDNAM The name of the file to be changed.

OLDLEN The length in characters of OLDNAM.

NEWNAM The name to be changed to.

NEWLEN The length in characters of NEWLEN.

CODE An integer variable set to the return code.

Notes on Usage

The user must be the owner to change the name. CNAMSS Goes not changethe last modified date-time of the file or any of the other attributesof the file.However, the last modified dete-time of the UFD in whichthe file resides is changed. On a new partition, CNAMSS may ceuse theposition of the file in the UFD to chenge with respect to the otherfiles. It is illegal to change the name of the MFD, BOOT, BADSPI', orthe packname. A NO RIGHT error messege is generated if this isattempted.

Compatibility

CNAMSS provides the functionality of CNAMES extended for long names.CNAMS$ is not aveileble under PRIMOS II or across the PRIMENET.

™~. etREV. @

G
a I 12 May 1976

PTU26 PART] PRIMOS FILE SYSTEM, REV. 12

1.2.4.5 GPASSS -—- Obtain UFD Passwords

Function

GPASSS returns the pesswords of ea SUBUFD in the current UFD.

Celling Sequence

CALL GPASSS (UFDNAM,NAMLEN,OPASS , NFASS , CODE)

Perareters

UFDNAM The name of the UFZ whose pesswords ere to be returned.

UFDNAM is searched for in the current UFD.

NAMI iN The length in characters of UFDNAM.

OPASS A three-word erray that is set to the owner password of

UFDNAM.

NPASS A three-word errey thet is set to the non-owner password of

UFDNAM.

CODE An integer veriable set to the return code.

Notes on Usage

On the old file system it was possible to obtain the passworcs of 4 UFD

by reading the UFD’s header with PRWFIL. On new pertitions it is not

possible to read a UFD with PRWFIL or PRWFSS -- GPASSS must be used.

GEASSS requires owner-rights to the current UFD.

If the bounce package is invoked (see Section 1.6) file wnit 16 is

used, and the current UFD is opened for reading, then closed.

Therefore, when GPASSS$ is called unit 16 should be closed, and the

current UFD should not be open for writing on eny unit.

REV. @ 30 - 13 May 1976

PLU26 PART] PRIMOS FILE SYSTEM, REV. 123

Examples

1) Read passwords of SURUFD into PASS (6) array:

CALL GPASSS (“SUBUFD “,6, PASS (1) ,PASS (4) , CODE)

Compatibility

GPASS$$ corresponds to no old file system subroutine. GPASSS works onboth old and new partitions.

REV. @ 36 - 14 Mey 1976

PTU3@ PART 1 PRIMOS FILE SYSTEM, REV. 12

1.3.4.6 NAMEQS -- Compare Filenames

Function

NAMEQS is a LOGICAL function that compares two filenames for

equivalence.

Calling Seouence

<logical> = NAMEQS (NAME] , LEN] , NAMEZ, LENZ)

Parameters

NAME] The first filename for comparison.

LEN] The length in characters of NAME].

NAMEZ The second filename for comperison.

LENZ The length in characters of NAMEZ2.

Notes on Usage

NAMECS Goes a character-by-character compare of NAMF1 and NAME2 up to

LEN] or LENZ, whichever is shorter. ‘the trailing characters of the

longer name (if the names ere not the same length) must all be blank

for equality.

NAMEQS will work correctly on numeric fields only if LENI=LEN2.

Examples

1) The following sets EQUAL to .TRUE. no matter what is in ARRAY:

EQUAL=NAMECS(ARRAY (1) ,127,ARRAY (1) ,127)

2) FNAME(3) must be “ ° for the following to set EQUAL .TRUE.:

EQUAL = NAMEQS (FNAME (1) ,6, “NAME”, 4)

REV. 0 30 - 15 May 1976

PTU36 PART] PRIMOS FILE SYSTEM, REV. 12

Compatibility

NAMEOS provides the functionality of NAMEQV extended for vérying lengthcheracter strings.

REV. © 32 - 16 Mey 1976

PTU30 PART 1 PRIMOS FILE SYSTEM, REV. 1:

1.3.4.7 PRWFSS -- Read-Write-Position SAM or DAM File

Function

PRWFSS is used to read, write, position, and truncate SAM or DAM files.

Celling Secuence

CALL PRWFSS (RWKEY+POSKEY+MODE , FUNIT, LOC (BUFFER) ,Nw,
FOS , RNW, CODE)

Perameters

RWKEY

POSKEY

REV. g

This subkey, which cannot be omitted, indicates the action to

be taken. Possible values are:

KSREAD--Read NW words from FUNIT into BUFFER.

KSWRIT--Write NW words from BUFFER to FUNIT.

KSPOSN--Set the current position to the 32-bit integer in

POS.

KSTRNC--Truncate the file open on FUNIT at the current

position.

KSREOS--Return the current position as a 32-bit integer word

nurber in POS.

A subkey indicating the positioning to be performed.

Possible values are:

KSPRER—-Move the file pointer of FUNIT POS words relative to

the current position before performing RWKEY.

KSPOSR--Move the file pointer of FUNIT POS words relative to

the current position after performing RWKEY.

KSPREA--Move the file pointer of FUNIT to the absolute

position specified by POS before performing RWEKEY.

KSPOSA—Move the file pointer of FUNIT to the ebsolute

position specified by POS after performing RWKEY.

30 - 17 May 1976

PTU2@ PART] PRIMOS FILE SYSTEM, REV. 132

Note: if this subkey is omitted, the default action is that
Of KSPRER.

MODE A subkey that is either omitted or has the value KSCONV. If
omitted, NW words ere read or written. If not omitted, a
convenient number of words (up to NW) is read or written.
(The meaning of "convenient" is described in the PRIMOS
User ‘s Guide.)

FUNIT A file unit number from 1 to 16 (1 to 15 for PRIMOS II or
under PRINET) on which a file has been opened by a call to
SRCHS$ or ky a commend. PRWFSS actions are performed on this
file unit.

BUFFER The data buffer to be used for reading or writing. If BUFFER
is not needed, it can be specified as LOC (0).

Nw The number of words to be read or written (MODE=0) or the
maximum number of words to be transferred (MODE=KSCONV). NW
mey be between @ and 65535.

POS A 32-bit integer (INTEGER*4) specifying the relative or
ebsolute positioning value depending on the velue of POSKEFY.

RW A 16-bit unsigned integer set to the number of words actually
transferred when RWKEY=KSREAD or KSWRIT. Other keys leave
RNW unmodified. For the keys KSREAD and KSWRIT, KNW must be
specified.

CODE An integer veriable to be set to the return code.

Notes on Usage

POS is always a 32-bit integer, not a <record-number, word-number>
peir. All cells to PRWFSS must specify POS even if no positioning is
requested. An INTEGER*4 @ canbe generated by specifying "@@@002" or
"INTL(@)" in FIN, "@L" in PMA,

POSKEY is observed for all values of RWKEY except REDPOS, for which it
is ignored (the file position is never changed).

If RWKEY = KSPOSN, NW end RNW are ignored, and no data is transferred.

Note thet it is nc longer necessary to call GETERR to obtain the number
of words transferred.

REV. § 3¢ - I& May 1976

PTU36 PART 1 PRIMCS FILE SYSTEM, REV. 13

Examples

1) Read the next 79 worcs from the file open on unit 1:

CALL PRWFSS$ (KSREAD,1,LOC (BUFFER) ,79,8@0606,NMREAD ,CODE)

2) Add 1624 words to the end of the file open on UNIT (10068000 is just
a very large number to get to the end of the file):

CALL PRWFSS (KSPOSN+KSPREA,UNIT, LOC (@) ,@, 18@8G9E2 , NMW,CCDE)
CALL PRWFSS (KSWRIT,UNIT, LOC (BFR) ,1624,@006@0,NMW,CCLE)

3) See what positicn is on file unit 15 (INT4 is INTEGER*4):

CALL PRWFSS (REDPOS,15,L0C (8) ,@, INT4,6,CCDE)

4) Truncate file 1@ words beyond the position returned by the ebove

call:

CALL PRWFSS (KSTRNC+KSPREA,15,LOC(@) ,€, INT4+16,6,CODE)

Corpatibility

PRWFSS cannot be used on UFDS or segment directories as could PRWFIL.
Note thet PRWFSS now performs the TRUNCATE function, formerly
associated with SEARCH. The REWIND function of SEARCH is also
performed by PRWFSS: to rewind ea file perform the following call:

CALL PRWFSS (KSPOSN+KSPREA,FUNIT,6,€,@00026,RNW, CODE)

This will position to the stert of the file without performing any date

trensfer.

REV. © 3¢ - 19 May 1976

PTU20 PART] PRIMOS FILE SYSTEM, REV. 13

1.3.4.8 RDENSS -- Reed UFD Entry

Function

RDENSS positions-in or reads~from & UFD.

Celling Sequence

CALL RDENSS (KEY,FUNIT,BUFFER, BUFLEN, RNW,NAME,NAMLEN,CODE)

Parameters

KEY

FUNIT

BUFFER

BUFLEN

NAME

NAMLEN

CODE

REV 6 g

An integer variable specifying the action to be teken.

Possible values are:

KSREAD—-Advance to the start of the first or next UFD entry

and read as much of the entry as will fit into BUFFER.
Set RNW to the number of words read.

KSGPOS--Return the current position in the UFD as a 32-bit
integer in NAME.

KSUPOS--Set the current position in the UFD from the 32-bit
integer in NAME,

A unit on which a UFD is currently opened for reading. (A
UFD may be cpened with a call to SRCHSS.)

A one dimensional array into which entries of the UFD are
read.

The length in words of BUFFER.

An integer variable thet will be set to the number of words
read.

A 22-bit integer véeriable used for keys of GETPOS and SETPOS.

A 16-bit integer variable reserved for future use. (It is
envisioned thet NAME and NAMLEN will in the future be used to
allow searching for the entry corresponding to a particular
filename.)

An integer variable to be set to the return code.

36 - 2¢ May 1976

PTU230 PART 1 PRIMOCS FILE SYSTEM, REV. 13

Notes on Usage

RDENSS is used to read entries from e UFD. RNW words are returned in

BUFFER, and the file unit position is advanced to the start of the next

entry. Return code ESECF means no more entries, ESBFTS means BUFFER is

too small for the entry.

Note thet in the new file system, UFDs are not compressed when files

are deleted, and vacant entries may be reused. ‘Thus, a newly-created

file will not necessarily be found at the end of a UFD.

The complete format of currently defined entries is given here. (All

numbers ere decimal unless preceded by 2 *:”.)

@ | ECW |. ENTRY CONTROL WORD (TYPE/LENGTH)
1 |F |

| I |
| L |
| E |
| ... | FILENAME (BLANK PADDED)
IN |
| A |
| M |
| E |

17 | PROTEC | PROTECTION (OWNER/NON-OWNER)
18 |RESERVED| RESERVED FOR FUTURE USE
19 | FILTYP | FILETYPE <--- (END OF ENTRY FOR TYPE1)

28 | DATMOD | DATE LAST MCDIFIED
21 | TIMMOD | TIME LAST MODIFIED
22 |RESERVED| RESERVED FOR FUTURE USE
23 |RKESERVED| RESERVED FOR FUTURE USE

ECW Entry Control word. An ECW is the first word in any entry

and consists of two 8-bit subfields. The high-order 8 bits

indicate the type of the entry, the low-order 8 bits give the

length of the entry in words including the EC itself.
Ebossible values of the ECw at REV. 13 are as follows:

:Q00@G1 - Type=0, length=l1. This entry indicetes either a

UFD header or a vecant entry. No information other then

the ECw is returnec.

REV. @ 28 - 21 May 1976

PTUSE

FILENAME

PROTEC

FILTYP

DATMOD

TIMMOD

REV. @

PART] PRIMCS FILE SYSTEM, REV. 13

7060424 ~ Type=1, length=20. Type=1 indicates an ole UFD
entry. words 0-19 in the diagram above ere returned.

7801020 - Type=2, length=24. Type=2 indicetes a new UFD
entry. All the above information is returned. Reserved
fields should be ignored.

User programs should ignore any entry-types that are not
recognized. ‘This will allow future expansion of the file
system without unduly affecting old programs.

Up to 32 characters of filename, blenk padded.

Qwner and non-owner protection attributes. ‘The owner rights
ére in the high-order 8 bits, the non-owner in the low-order
8 bits. The meanings of the bit positions are as follows (2
1-bit grants the indiceted eccess right):

1-5,9-13 Reserved for future use.
6,14 Delete/truncate rights.
7,15 Write-access rights.
8,16 Read-access rights.

On @ new partition, the low-order 8 bits indicete the type of
the file as follows:

SAM file.
DAM file.
SAM Segment directory.
DAM Segment Directory.
UFD

On an old partition, the filetype is zero -- the file must be
opened with SRCHS$ to determine its type. Of the high-order
8 bits, only bit 4 (:10008) is currently defined. If one, it
indicates a special file -- BOOT, MFD, DSKRAT, or BADSPT.
The other bits are reserved for future use. (Bit 4 is valid
on both new and old partitions.)

m
s

GO
)
A
D

be
t
E
D

The date on which the file was last modified. ‘The date,
which is valid only on new partitions, is held in the binary
form YYYYYYYMMMMDDDDD, where YYYYYYY is the year modulo 1¢@,
MMMM is the month, DDDDD is the day.

The time at which the file was last modified. The time,
which is velid only on new partitions, is held in binary
seconds-since-midnight divided by four.

30 - 22 May 1976

PIUZE PART 1 PRIMCS FILE SYSTEM, REV. 13

Examples

1) Read next entry from new or old UFD:

186 CALL RDENSS (KSREAD ,FUNIT, ENTRY, 24, RNW,&,@ CODE)

IF (CODE .NE. @) GOTO <error hendler>

TYPE=RS (ENTRY(1),8) /* GET TYPE OF ENTRY JUST READ

IF (TYPE.NE.1.AND.TYPE.NE.Z) GOTO 1@6 /* UNKNOWN

2) Position te beginning of UFD:

CALL RDENSS (KSUPOS,FUNIT,@,@,8, 068080, ,CODE)

Compatibility

RDENSS provides the facility lecking in the new PRWFS$ -- the ability

to read UFDs. In addition, knowledge of the internal leyout of é UFD

is not necessary in user programs. RDENS$ can be used on koth old and

new partition UFDs.

REV. @ a
d
e
S ! N
O
a May 1976

PTUZE PART 1] PRIMCS FILE SYSTEM, REV. 13

1.3.4.9 RESTSS -- Restor a P3g¢ Memory Image from a File

Function

RESTS$ reads e P30 memory image from e file in the current UFD into
memory.The SAVE “G parameters for a file previosly written to the Gisk
by the SAVE or SAVESS subroutine or the SAVE commend are loaded into
the nine word erray VECTOR. ‘The memory imege itself is then loaded
into memory using the sterting and ending addressed provided by
VECTOR (1) and VECTOR(2).

Calling Seouence

CALL RESTSS$ (VECTOR, NAME, NAMLEN,CODE)

Peremeters

VECTOR A nine word erray set by RESTSS. VECIOR(1) is set to the
first location in memory to be restored. VECTOR(2) is set to
the last location to be restored. The rest of the array is
set es follows:

VECTCR(3) saved P register
VECIOR (4) saved A register
VECTOR (5) saved EB register
VECTOR (6) saved X register
VECIOR (7) saved Keys

VECTOR(8) not used

VECTOR (9) not used

NAME The name of the file containing the memory image.

NAMLEN The length in characters of NAME.

CODE An integer variable set to the return code.

Compatibility

RESTS$ has the same function as RESTOR and handles long names. RESISS
works on both old end new partitions.

REV. 36 - 24 Mey 1976

PIUSE PART 1 PRIMCS FILE SYSTEM, REV. 13

1.3.4.18 RESUSS -- Resuming @ P3208 Mewory Image File

Function

RESUSS restores e P26G memory image from a file in the current UFD,

initializes registers from the saved parameters, and sterts execut ing

the program.

Calling Sequence

CALL RESUSS (NAME, NAMLEN)

Perameters

NAME The name of the file containing the memory image.

NAMLEN The length in characters of NAME.

Notes on Usaade

RESUSS Goes not heve e CODE argument. On @ error, an error message is

typed and control returns to commend level.

Compatibility

RESUSS provides the functionality of RESUME extended for long names.

RESUSS works both on old and new partitions.

REV. & 2G - 25 May 1976

PTU=6 PART] PRIMOS FILE SYSTEM, REV.]3

1.3.4.1] SATRSS -- Set Attributes in UFD Entry

Function

SAIRS$ allows the setting or modification of a file’s attributes in its
UFD entry.

Calling Sequence

CALL SATRSS (KEY, NAME, NAMLEN,ARRAY , CODE)

Perameters

KEY An integer variable specifying the action to take. Possible
values are:

KSPROT--Set protection attributes from ARRAY(1). ARRAY(2) is
ignored for old partitions and must be @ for new
partitions (it is reserved for expansion). ‘The meaning of
the protection bits in ARRAY(1) is given under RDENSS
above.

KSDTIM--Set date/time modified from ARRAY(1) and ARRAY(2).
The formet of the date/time is given under RDENSS above.

NAME The name of the file whose ettributes are to be modified.
The current UFD is searched for NAME.

NAMLEN The length in cheracters of NAME.

ARRAY A two-word erray containing the attributes. For KSPROT,
ARRAY (2) must be zero,

CODE An integer veriable set to the return code.

Notes on UsSeqe

Owner rights ere required on the UFD containing the entry to be
modified.

The formats of the attributes in ARRAY are the same as those in e UFD
entry obtained from RDENSS,

REV. 0 28 - 26 Mey 1976

PTU20 PART 1 PRIMCS FILE SYSTEM, REV. 12

An attempt to set the date/time modified on an old partition will

result in en ESOLDP error (error messege ‘OLD PARTITION‘).

Since a call to SATRSS modifies the UFD, the date/time modified of the

UFD itself is updated.

If the bounce package is being used (see Section 1.6), file unit 16

should be closed, and the current UFD should not be open on any unit

prior to the call.

Examples

1) Set default protection ettributes on MYFILE:

ARRAY (1)=:24@@ /* OWNER=7, NCN-OWNER=¢

ARRAY (2) =@ /* SECOND WCRD MUST BE @

CALL SATRSS$ (KSPROT, ‘MYFILE °,6,ARRAY (1) ,CODE)

2) Set both owner and non-cwner attributes to read-only (note cerefully

bit positioning in two-word octel constent) :

CALL SATRSS (KSPRCT, ‘NO-YOU-DON ° “I “,12, 160206006 ,COLE)

3) Set date/time modified from UFD entry read into ENTRY by RDENSS:

CALL SATRS$ (KSDTIM , FILNAM ,6, ENTRY (21) ,CODE)

Compatibility

SATRSS has no corresponding old file system routine. It provides a

facility (setting the protection bits of a file) formerly aveilable vie

PRWFIL. SATRSS can be used on old enc new partitions.

REV. & 36 - 27 May 1976

PIU26 PART] PRIMOS FILE SYSTEM, REV.]2

1.3.4.12 SAVESS -- Save a P3099 Memory Image as a File

Function

SAVESS is used to save a Prime 366 memory imege eas e file in theCurrent UFD.

Calling Sequence

CALL SAVESS (VECTOR, NAME , NAMLEN)

Peremeters

VECTOR A nine word array the user sets up before celling SAVESSVECTIOR(1) is set to an integer which is the first location inmemory to be saved end VECTOR(2) is set to the last locationto be saved. The rest of the array iS set at the user’soption and has the following meaning:

VECTOR (3) saved F register
VECIOR(4) Saved A register
VECTOR (5) Saved B register
VECTOR (6) Saved X register
VECTOR (7) Saved Keys
VECTOR (8) not used
VECTOR (9) not used

NAME The name of the file to contain the memory image.

NAMLEN The length in characters of NAME.

Notes on usageaeSnusage

SAVESS does not have a CODE argument. On an error, an error message istyped and control returns to commend level.

Compatibility

SAVES$ provides the functionality of SAVE extended for long names.SAVES$ can be used on new and old partitions.

REV. @ 30 - 28 May 1976

PIU PART 1 PRIMOS FILE SYSTEM, REV. 12

1.3.4.13 SPASSS -- Set UFD pesswords

Function

SPASSS sets the passwords of the current UFD.

Calling Sequence

CALL SPASSS (OPASS , NPASS , CCDE)

Perameters

OPASS A three word arrey that contains the password to set és the

owner passworc.

NPASS A three word array that contains the password to set as the

nonwoner password.

CODE An integer varieble set to the return code.

Notes om usace

SPASSS requires owner rights to the current UFD. Passwords should not

Start with e number nor should they contein blanks, commas;

=,!,@,{,$,[,],(,or) .Passwords should not contain lower-case characters

but may contain any other characters including control characters.

If the bounce package is invoked (see section 1.6), file unit 16 is

used end the current ufd is opened for writing, then closed. The

current ufd should not be open on any unit before making this call.

Compatibility

SPASSS has no corresponding old file system subroutine. SPASS$ works

on both new and old partitions.

REV. @ | 26 - 29 May 1976

PIUSE PART] PRIMOS FILE SYSTEM, REV. 1%

a
)

1.3.4.14 SRCHSS -- Open or Close a File

Function

SRCHS$ is used to connect ea file to a file unit (open 2 file),Gisconnect a file from e file unit (close é file), delete a file, orcheck on the existence of a file.

Calling Sequence

CALL SRCHS$ (ACTION+REF+NEWFIL, NAME, NAMLEN, FUNIT, TYPE , CODE)

Parameters

ACTION A subkey indicating the action to be performed. Possible
values are:

KSREAD--Open NAME for 1 :ading on FUNIT.

KSWRIT--Open NAME for writing on FUNIT.

KSRDWR--Open NAME for reading end writing on FUNIT.

KSCLOS—-Close file by NAME or by FUNIT.

KSDELE--Delete file NAME,

KSEXST--Check on existence of NAME,

REF A subkey modifying the ACTION subkey as follows:

KSIUFD--Search for file NAME in the current UFD (this is the
default) .

KSISEG--Per form the ection specified by ACTION on the file
that is a segment directory entry in the directory open on
file unit NAME,

KSCACC--Change the access rights of the file already open on
FUNIT to ACTION.

NEWFIL A subkey indicating the type of file to create if NAME Goes
not exist. Possible values are:

REV. @ 32 ~ 32 May 1976

aPIUZ6 PART 1] PRIMOS FILE SYSTEM, REV. 12

KSNSAM——-New threaded (SAM) file (this is the defeult).

KSNDAM—-New directed (DAM) file.

KSNSGS--New threaded (SAM) segment directory.

KSNSCD--New directed (DAM) segment directory.

Note that it is not possible to generate @ new UFD with

SRCHSS. Use CREASS instead.

NAME The name of the file to be opened. The key OPNCUR can be

used to open the current UFD (ACTION keys KSREAD, KSWRIT, Or

KSRDWR only). If REF is KSISEG, NAME is a file unit from 1

to 16 (1 to 15 under PRIMOS II or PRINET) cn which é segment

Girectory is elready open.

NAMLEN The length in characters of name.

FUNIT The nurber (1-16, 1-15 under PRIMOS II or PRINET) of the file

unit to be opened or closed.

TYPE An integer variable that is set to the type cf the file

opened. TYPE is set only on calls thet open e file -- it is

unmodified for other calls. Possible values of TYPE are:

SAM file

DAM File

SAM Segment Directory
DAM Segment Directory

UFCd
s

G4
)
K
O

b
Y
&

CODE An integer variable set to the return code.

Notes on Usage

The keys REWIND and TRUNCATE of the old SEARCH are now PRWFSS

functions.

Note thet it is no longer necessery to call GETERR to obtain the type

of the file opened. (Indeed, ERRVEC is no longer set up with the

filetype.)

A UFD may be opened only for reading. An attempt te open é UFD for

writing will result in en ESNRIT error (error message "NO RIGHT’).

A UFD cannot be deleted unless it is empty. A segment directory cennot

be deleted unless it is of length @. (It can be made to be @ length by

a SGDRSS call with the MAKSIZ key -- see description of SGDRS$$.)

REV. @ 30 - 3] Mey 1°76

PTU2ZC PART] PRIMOS FILE SYSTEM, REV. 12

Exemples

1) Open new SAM file named RESULTS for output on file unit 2:

CALL SRCHSS (KSWRIT, “RESULTS “,7,2,TYPE,CODE)

2) Create new DAM file in the segment directory open on SGUNIT and open
for reading and writing on DMUNIT:

CALL SRCHSS (KSRDWR+KSISEG+KSNDAM , SGUNIT, 1, DMUNIT, TYPE , CODE)

3) Close and delete the file created in the above call:

CALL SRCHS$ (KSCLOS,@,@,DMUNIT,@,CODE)
CALL SRCHS$ (KSDELE+KSISEG, SGUNIT, @,@,8,CODE)

4) See if filename “MY.BLACK.HEN’ is in current UFD:

CALL SRCHSS$ (KSEXST+KSIUFD, “MY.BLACK.HEN °, 12,0,TYPE,CCDE)
TF (COLE.EC.ESFNIF) CALL TNOU(‘NOT FOUND ’,9)

5) Create a new segment directory end e new SAM file es its first
entry:

CALL SRCHSS (KSRDWR+KSNSGS , “SEGDIR *,6, UNIT, TYPE , CODE)
CALL SRCHSS$ (KSWRIT+KSNSAM+KSISEG, UNIT, 6,7,TYPE, CODE)

Compatibility

SRCHSS provides all the functionality of SEARCH except the REWIND and
TRUNCATE functions, which are now provided by PRWFSS. Also, since UFDs
cannot be read with PRWFSS, filned or closed.

TYPE An integer variable that is set to the type of the file
opened. TYPE is set only on calls that open a file -- it is unmodified
for other calls. Possible values of TYPE are:

SAM file
DAM File

SAM Segment Directory
DAM Segirent Directory
UFCB

D
OG
)
A
Y
!
&

CODE An integer veriable set to the return code.

REV. @ 30 - 32 May 1976

PTU3@ PART] PRIMOS FILE SYSTEM, REV. 12

Notes on Usege

The keys REWIND end TRUNCATE of the old SEARCH ere now PRWESS$

functions.

Note thet it is no longer necessary to call GETERR to obtein the type

of the file opened. (Indeed, ERRVEC is no longer set up with the

filetype.)

A UFC mey be opened only for reading. An ettempt to open e UFP for

writing will result in an ESNRIT error (error message ‘NO RIGHT’).

A UFD cannot be deleted unless it is empty. A segment directory cannot

be deleted unless it is of length 9. (It can be made to be @ length by

a SGDRSS call with the MAKSIZ key —- see description of SGDRS$S.)

Examples

1) Open new SAM file named RESULTS for output on file unit 2:

CALL SRCHSS (KSWRIT, ‘RESULTS °,7,2,TYPE,CCDE)

2) Create new DAM file in the segment directory open on SGUNIT anc open

for reeding and writing on DMUNIT:

CALL SRCHSS (KSRDWR+KSISEG+KSNDAM , SGUNIT , 1, DMUNIT ,TYPE ,CCDE)

3) Close and delete the file created in the above call:

CALL SRCHS$ (KSCLOS,6,8,DMUNIT,&,CCDE)

CALL SRCHSS (KSDELE+KSISEG,SGUNIT,@,@,@,CODE)

4) See if filename MY.ELACK.HEN” is in current UFD:

CALL SRCHS$ (KSEXST+KSIUFD, MY.BLACK.HEN °,12,8,TYPE,CCDE)

IF (CODE.EQ.ESFNTF) CALL TNOU(‘NOT FOUND ’,9)

5) Create a new segment directory anc e new SAM file as its first

entry:

CALL SRCHSS (KSRDWR+KSNSGS, ‘SEGDIR °,6,UNIT,TYPE , CODE)

CALL SRCHSS (KSWRIT+KSNSAM+KSISEG, UNIT, @,7,TYPE ,CCDE)

REV. @ 36 - 33 Mey 1976

PIU20 PART] PRIMCS FILE SYSTEM, REV. 12

Compatibility

SRCH$$ provides all the functionality of SEARCH except the REWIND and
TRUNCATE functions, which are now provided by PRWFSS. Also, since UFDs
cennct ke read with PRWFSS, files can no longer be opened via a KSISEG
through UFD entries. SRCHSS can be used on old and new partitions.

REV. @ 30 - 34 May 1976

PTU26 PART 1 PRIMOS FILE SYSTEM, REV. 13

1.3.4.15 SGDRSS -- Position and Read Segment Directory Entries

Function

SGDRS$ positions in a segment directory, reads entries, and allows

modification of a Girectory’s size.

Calling Sequence

CALL SGDRSS (KEY,FUNIT,ENTRYA, ENTRYB , CODE)

Peremeters

KEY An integer specifying the ection to be performed. Possible

velues are:

KSSPOS--Move the file pointer of FUNIT to the position given

by the velue of ENTRYA. Return] in ENTRYB if ENTRYA

conteins a file, return @ if ENTRYA exists but does net

contain a file, return -l] if ENTRYA does not exist (is

beyond EOF). If EOF is reached on KSSPOS, the file

pointer is left at FOF. The directory must be open for

reading or both reading and writing.

KSGOND--Move the file pointer of FUNIT to the enc-of-file

position end return in ENTRYB the file entry number of the

end of the file.

KSGPOS--Return in ENTRYB the file entry number pointed to by

the file pointer of FUNIT.

KSMSIZ--Meke the segment directory open on FUNIT ENTRYA

entries long. The file pointer is moved to the end of

file. The directory must be open for both reading and

writing

KSMVNI--The entry pointed to by ENTRYA is moved to the entry

pointed to by ENIRYB. The ENTRYA entry is replaced with 4

null pointer. Errors are generated by KSMVNT if there is

no file at ENIRYA, if there is already a file at ENIRYB,

if either ENTRYA or ENTRYB are at or beyond EOF. The file

pointer is left at an undefined position. The directory

must be open for both reading end writing.

REV. & 30 - 35 May 1976

PTUS0 PART 1] PRIMOS FILE SYSTEM, REV. 13

FUNIT The file unit on which the segment directory is open.

ENTRYA An unsigned 16-bit entry number in the directory, to be
interpreted eccording to KEY.

ENTRYB An unsigned 16-bit integer set or used according to KEY.

CODE An integer variable set to the return code.

Notes on Usage

When using SGDRS$, the segment directory should not be opened for
write-only access.

A KSMSIZ call with ENTRYA=@ will cause the directory to have no
entries. If the value of ENTRYA is such es to truncate the directory,
all entries including end beyond the one pointed to by ENTRYA must be
null.

N.B.: When sequentially reading a directory (KSSPOS, ENTRYA =

ENTRYA+1, KSSPOS, ...), ENTRYE=-l1 indicetes the end of the directory,
NOT the return code ESEOF. ESEOF will be returned when’ ENTRYA
indicates a position beyond EOF, i.e., the entry following the first
KSPOS to return ENTRYB=-1.

Examples

1) Read sequentially through the segment directory open on 6:

CURPOS=-1
106 CURPOS=CURPOS+1

CALL SGDRS$ (KSSPOS,6,CURPOS, RETVAL, CODE)
IF (RETVAL) 200,206,406 /* BOTTOM, NO FILE, IS FILE

2) Make directory open on 2 as big es directory open on 1:

CALL SGDRSS$ (KSGOND,1,@,SIZE,CODE)

IF (CODE.NE.@) GOTO <error hendler>

CALL SGDRSS (KSMSIZ,2,SIZE,@,CCDE)

REV. © 20 - 36 May 1976

PTUSE PART] PRIMOS FILE SYSTEM, REV. 13

Competibility

SGDRS$ prcOvi 7y forrerly available via PRWFIL. Note f

however, thé

an
ces

tx

SGDRSS will work on olc enc new segment Girectories (i.e., will work on

both one-woré end two-word entry segment directories).

REV. @ 26 - 37 May 1976

PLUs@ PART] PRIMOS FILE SYS1EM, REV. 13

1.3.4.16 TEXIOS -- Check Validity of Filename

Function

TEXTC$ checks to see if a filename hes velid formet.

Celling Seouence

CALL TEXTOS (NAME,NAMLEN,TRULEN,TEXTOK)

Pearemeters

NAME An arrey containing the filename to be checked.

NAMLEN The length of NAME in cherecters.

TRULEN An integer set to the true number of characters in
TRULEN is valid only if TEXTOK is TRUE.

TEXICK A logicel variable set to .TRUE. if NAME is eé
filename, else set to .FALSE.

Notes on Usege

NAME.

velid

TKULEXN is the number of cherecters in NAME preceeding the first blenk.
If there ere nc blenks, TRULEN is equal to NAMLEN.
valid in filenames are given in Section 1.2.1.1.

Exemples

The cheracters

1) Read name from terminal, check for validity, set TRULEN to actual
name length:

REV. @

CALL ISAA12 (0,BUFFER, 82,$999)

CALL TEXTOS (EUFFER,22,TRULEN,CK) /* SET TRULEN
IF (.NOT.OK) GCTO <bad-name>

36 - 38 Mey 1976

PTUSY PART 1] PRIMCS FILE SYSTEM, REV. 12

Compatibility

TEXTOS extencs the functionality of TEXTOK.

REV. @ 3 - 39 May 1976

PTU2O PART 1] PRIMCS FILE SYSTEM, REV. 13

1.2.5 ERRCR CODE SUMMARY

‘the following teble summarizes all new file system error codes,
Numeric definitions ere given in the next secticn on SYSCOM.

X=>Possible Error O=>0ld Partition Only B=>Bounce Packsege Only

CODE ATCHS$_CREAS$ GPASSS_PRWFSS$ RDENSS SATRSS SRCHSS SGDRS$

ESEOF Xx X X
ESBOF X X X
ESUNOP x x X(I) XxX
ESUIUS B B B X (2)
ESFIUS B B RB X(2)
ESBPAR(3)
ESNATT X X x Xx X(4)
ESFDFL O 0(5)

. ESDKFL X X(5) X(5) (5)
ESNRIT X x X x X
ESFDEL X
ESNTUD X X X (4)
ESNTSD X(8)
ESDIRE(3)
ESFNTF x X X X(4)
ESFNTS X(8) X
ESBNAM X X (4,5)
ESEXST X xX
ESDNTE X
ESSHUT(3)
ESDISK(6).—X X X X x X X X
ESBCAM x X
ESPTRM X x X X X X X X
ESBPAS X(7)
ESBCOD(2)
ESBTRN Xx
ESOLDP 0
ESPKEY x X x X X
ESBUNT X X X X
ESBSUN X (8)
ESSUNO X(8)
ESNMLG
ESSDER(3)
ESBUFD(9)—-X X X x X X
ESBFTS X
ESFITB Xx

Notes

1) Possible for KSCACC key only.

REV. @ 30 - 4@ Mey 1976

PIU PART 1 PRIMOS FILE SYSTEM, REV. 13

2) Possible for all keys but KSEXST.

3) Internel error -~- never seen by user progrem.

4) Possible only on UFD reference keys.

5) Possible only on write operations.

6) An ESDISK (disk I/0) error will always immediately return the

program to PRIMOS command level.

7) An ESBEAS (bed password) error will élweys immediately return the

program to PRIMOS commend with no UFD attached.

&) Possible only on segment directory reference keys.

S) An ESBUFD (bed UFD) error will be returned only on a RDENSS call end

a bounced GPASSS call. Other subroutines will place the user at

PRIMCS commend level.

REV. @ 36 - Al May 1976

PTUZ6 PART] PRIMCS FILE SYSTEM, REV. 13

1.4 NEW FILE SYSTEM KEY AND ERROR DEFINITIONS

1.4.1 KEYS.F -- FILE SYSTEM KEY DEFINITIONS

Keys for the new file system cells are definea in two SINSERT files -—-
KEYS.F for FORTRAN and KEYS.P for PMA -- in the UFD SYSCOM on Volume 1
of the Master Disk. KEYS.F is reproduced here to aid in correlation of
the key names with the old file system keys. KEYS.P is egquivelent,
using EQUs instead of PARAMETERS.

C SYSCOM>KEYS .F MNEMONIC KEYS FOR FILE SYSTEM (FTN)
NOLIST

Cc
C TABSET 6 11 28 69
C

INTEGER*2 KSREAD, KSWRIT, KSPOSN, KSTRNC , KSRPOS , KSPRER, KSPREA,
X KSPOSR, KSFOSA, KSCONV, KSRDWR, KSCLOS , KSDELE , KSEXST,
x KSIUFD, KSISEG, KSCACC, KSNSAM , KSNDAM , KSNSGS , KSNSGD,
X KSCURR, KSIMFD, KSICUR, KSSETC , KSSETH, KSALLD,, KSSPOS,
Xx KSGOND, KSMS1Z , KSMENT, KSENTR, KSSENT , KSGEOS , KSUPOS,
X KSPROC1 , KSDTIM, KSDMPB , KSNRIN, KSSRIN, KSIRIN

C
PARAMETER

Xx
XARAIOCIIITAIITARTAIIIIAIIA/
XxX /*
xX /*
X /* KEY DEFINITIONS
XxX /*
X /*
XDAGOOGIC. DRWE'SS GGTaak
xX /* RaRWKRY doe

x KSREAD = :1, /* READ

Xx KSWRIT = :2, /* WRITE

X KSPOSN = :3, /* POSITICN ONLY
Xx KSTRNC = 3:4, /* TRUNCATE

RK KSRPOS = :5, /* READ CURRENT POSITION
xX /* tkDOSKRY dokiokink

X KSPRER = :@, /* PRE-POSITION RELATIVE
X KSPREA = :10, /* PRE-POSITION ABSOLUTE
X KSPOSR = :2@, /* POST-POSITICN RELATIVE
Xx KSPOSA = :38, /* POST-POSITION ABSOLUTE
xX /* kkAKKK MODE kkk

X KSCCNV = :40¢, /* CONVENIENT NUMBER OF WORDS
Xx /*
X ORIICGICE SCRCHSS GGGIIIIIa

REV. @ 2¢ - 42 May 1976

PTU2@

REV.

/* KKKEKK

/* KSREAD = :]1, /*

/* KSWRIT = 22, /*
KSRDWR = 3:2, /*
KSCLOS = :4, /*

KSDELE = :5, /*
KSEXST = :6, /*

/* KEKKKK

KSIUFD = :@, /*

KSISEG = :168, /*
KSCACC = :1¢8¢, /*

/* RKKKKE

KSNSAM = :@, /*
KSNDAM = :2¢00, /*
KSNSGS = :4@@@, /*

KSNSGD = :6660, /*

KSCURR = :177777,/*
/*

[BRRRKRERKREKEREKERKER

/* KKKKKK

KSIMFE = :@, /*

KSICUR = 3:2, /*
/* KKKKKK

KSSETC :0, /*

KSSETH :1, /*
/* KEKKKX

KSHOME = :4, /*
/* KEKKKE

KSALLD = :10¢00¢,/*

/* KSCURR = :177777,/
/*
[RRREREREREREREREEKERE

/* KREKKKE

KSSPOS = :1, /*

KSGOND = :2, /*

KSGPOS = :2, /*
KSMSIZ = 3:4, /*

KSMVNT = :5, /*
/*

[BRREKEREKEREREREEEKKR

/* KKKKKK

/* KSREAD = :1, /*
KSRSUE = :2, /*

/* KSGEOS = :2, /*
KSUPOS = :4, /*

/*

[REKRRREEKERERKEEEREKKK

/* RKKKKK

KSPRCT = :1, /*
KSDTIM = :2, /*

KSDMPR = :3, /*
/*

[BREREKEREEKEREREREERKbe
De

DE
DS

DE
D
E

DE
DE

DE
DE

DE
DE

DE
DE
-D
E

DE
D
D
E

DE
DE
D
E
D
D
E
D

OD
E
D
O

O
D
E
D

OD
E
O
D
O
D
E

D
S

O
D
E
O

OK
DK

OE
DS

DS
OD
D
D
C

OS
OK

* cr fe* SEARCH

PART 1] PRIMOS FILE SYSTEM, REV. 13

ACTION ****kx

OPEN FCR READ
CPEN FOR WRITE
OPEN FCR READING AND WRITING

CLOSE FILE UNIT
DELETE FILE
CHECK FILE “S EXISTENCE
REF aKKKKK

FILE ENTRY IS IN UFC
FILE ENTRY IS IN SEGMENT DIRECTORY

CHANGE ACCESS
NEWFIL ****%*

NEW SAM FILE
NEW DAM PILE
NEW SAM SEGMENT DIRECTORY
NEW DAM SEGMENT DIRECTCRY

CURRENTLY ATTACHED UFD

KEKKKEKEKREREKKKEKEKKEKE

RKKKKK

IN MFC

AICHSS

KEY
UFC IS
UFD IS IN CURRENT UFD
KEYMOD ******

SET CURRENT UFD (DC NOT SET HOME)
SEIT HOME UFD (AS WELL AS CURRENT)
NAME #eee#S

REVURN TC HOME UFD (KEY=KSIMFD)
LDISK ******

SEARCH ALL DISKS
MPD CF CURRENT DISK

SGEDRSS FRRRRRRKRRRRRRIK

KEY KKKKKK

POSITION TC ENTRY NUMBER IN SEGDIR
POSITION TO END OF SEGDIR
RETURN CURRENT ENTRY NUMBER
MAKE SEGDIR GIVEN NR OF ENTRIES
MOVE FILE ENTRY TO NEW EFOSITION

RDENSS KEKKKEKKKKKEKKKKREKRERERE

KEY KRKKKKK

READ NEXT ENTRY
READ NEXT SUB-ENTEKY
RETURN CURRENT POSITION IN UFD
POSITION IN UFD

SATRSS KEKEKKEKKKEEKKEKEEKKKEKE

KEY kkKKKKEK

SET PROTECTION
SET DATE/TIME MODIFIED
SET DUMPED BIT

ERPRSS KKEKKKKEKKEEKEEKEKEKEKK

Mey 1976

PTU3& PART] PRIMCS FILE SYSTEM, REV. 12

x /* kkAKKK KEY kkkRK
X KSNRIN = :6, /* NEVER RETURN TO USER
X KSSRIN = :1, /* RETURN AFTER START CCMMAND
X KSIRIN = :2 /* IMMEDIATE RETURN TO USER
xX /*
X /*
XK [SRRRKKRKIKERRKEKEKER AKKERRERI IKKERKIK IRERRAAKERRIAER
LIST

REV. @ 36 - 44 Mey 1976

PIU

1.4.2

The def in

of the new error names with old file syste

PART 1

ERRD.F -- ERROR RETURN CCDE DEFINITICNS

‘t
T > D yy>c

te

Q
as

error codes. ERRD.P

PMA) provides exactly the same definitions in the form of EQUs.

two-cherecter codes et the

codes thet were found in ERRVEC(1).)

C
C SYSCOMDERED.F DEFINE SYSTEM ERROR CODES AS PARAMETERS

JPC 15 NOV 76
NOLIST

C

C
C DEFINES ALL ERROR CODES

C

REV.

INTEGER*2 ESEOF, ESBOF , ESUNOP, ESUIUS ,ESFIUS ,ESEBPAR, ESNATT,

PRIMOS FILE SYSTEM, REV. 12

rrelation

(fo
(the

right are the old file system ecuivelent

X ESFDFL,ESDKFL, ESNRIT , ESFLEL, ESNTUD, ESNTSD, ESDIRE,

X ESFNIF , ESFNIS , ESBNAM, ESEXST , ESDNTE , ESSHUT ,ESDISK,

X ESBDAM , ESPT ,ESBPAS , ESBCCD, ESETRN , ESOLDP, ESBKEY,

x ESBUNT , ESBSUN, ESSUNC , ESNMLG, ESSCER, ESBUFC,ESBFIS,

K ESFITB, ESNULL

PARAMETER

X ESEOF= 1, /* END OF FILE PE */

xX ESBOF = 2, /* BEGINNING OF FILE BG */

Xx ESUNCE= 3, /* UNIT NOT GPEN PD,SD */

X ESUIUS= 4, /* UNIT IN USE SI */

X ESFIUS= 5, /* FILE IN USE SI */

X ESBPAR= 6, /* BAD PARAMETER SA */

XK ESNATT= 7, /* NO UFI: AITACHED SL,AL */

X ESFDFL= 8, /* UFD FULL SK */

X ESDKFL= 9, /* DISK FULL DJ */

X ESNRIT=10, /* NO RIGHT SX */

X ESFDEL=11, /* FILE CPEN ON DELETE S~ */

X ESNIUD=1Z, /* NOT A UFD AR */

XR ESNTSD=12, /* NOT A SEGDIR — */

X ESDIRE=14, /* IS A DIRECTORY —- */

X ESFNIF=15, /* (FILE) NOT FOUND SH,AH */

X ESFNTS=16, /* (FILE) NCT FOUND IN SEGDIR SO */

X ESBNAM=17, /* ILLEGAL NAME CA */

X ESEXST=1@, /* ALREADY EXISTS CZ */

Xx ESDNIE=19, /* DIRECIORY NOT EMPTY —— */

X ESSHUT=26, /* BAD SHUTDN (FAM ONLY) BS */

X ESDISK=21, /* DISK I/O EKROR WE */

X ESBDAM=22, /* BAD DAM FILE (FAM ONLY) SS */

X ESPTRM=23, /* PIR MISMATCH (FAM ONLY) PC,DC,AC */

X ESBPAS=24, /* BAD PASSWORD (FAM CNLY) AN */

Xx ESBCOD=25, /* EAD CODE IN ERRVEC —— */

Xx ESBTRN=26, /* BAD TRUNCATE OF SEGDIRK —— */

x ESOLDP=27, /* CLD PARTITION —— */

X ESBKEY=28, /* BAD KEY —- */

Y 30 - 45 May 1976

PTU36 PART 1] PRIMOS FILE SYSTEM, REV. 13

X ESBUNT=29, /* BAD UNIT NUMBER —— */
X ESBSUN=30, /* BAD SEGDIR UNIT SA */
X ESSUNO=31, /* SEGDIR UNIT NOT OPEN —— */
X ESNMLG=32, /* NAME TOO LONG —- */
X ESSDER=33, /* SEGDIR ERROR SC */
X ESBUFD=34, /* BAD UFD —— */
X ESBFTS=35, /* BUFFER TOO SMALL —— */
X ESFITB=36, /* FILE TOO BIG —— */
X ESNULL=37 /* (NULL MESSAGE) -— */
LIST

C

C END SYSCOM>ERRD.F

REV. & 36 - 46 May 1976

PTU3@ PART] PRIMOS FILE SYSTEM, REV. 13

1.5 NEW FILE SYSTEM ERROR HANDLING CONVENTIONS

1.5.1 MOTIVATION

All the new file system routines described in the previous section

employ new error handling procedures that will slowly be incorporated

into other PRIMOS subsystems. ‘The new error handling facilities will

not affect existing programs, and only programs using the new file

system cells need to be aware of the new error handling.

The new error handling protocol was motivated by the following

considerations.

1) Except for a few restricted cases, FORTRAN non-local GOTOs do not

work in 64V mode (available since REV. 18).

2) Non-local GOTOs are a violation of good programming practice.

3). Error information in a recursive/reentrant environment must be

associated with a particular cell, not left in e single static

place (e.g., ERRVEC).

1.5.Z THE RETURN CODE FARAMETER

All error codes, formerly placed in ERRVEC, are now returned to the

user in e 16-bit user-supplied integer variable. For example, in the

call:

CALL PRWFSS (KEY,UNIT,LOC(BFR) ,NW, POS, RNW,CODE)

C PRWFSS (KEY,UNIT, LOC (BFR) ,NW, POS, RNW, CODE)

CODE is an integer PRWFSS$ sets to the appropriate return code.

CODE can be thought of as a replacement ffor the (optional)

alternate-return argument.

The effect of the old error handling scheme can be achieved through

code such as:

CALL CREASS (NAME,NAMLEN,OPASS,NPASS ,CCDE)

IF (CODE.NE.@) GOTO 99

which would be equivalent to supplying en ALTRIN of $99 in the old

scheme (except, of course, that GETERR need not be called to obtain the

error code).

REV. 36 - 47 May 1976

PIU26 PART] PRIMCS FILE SYSTEM, REV. 13

N.B.:

=

CODE shoulc alweys be checked for zero or non-zero to ensure
thet errors do not go unnoticed.

1.5.2 STANDARD SYSTEM ERROR CODE DEFINITIONS

Standard system error codes are FORTRAN PARAMETER or PMA EQU variables
with stenderdized names. In all Cceses, zero means no error. Any other
velue identifies a particular error or exceptional (not necessarily
error) condition. All reference to specific code velues (cther then
zero) shoulc be by the standardized names. For convenience, all names
are defined in two SINSERT files -- ERRD.F for FORTRAN end ERRD.P for
PMA. These files are included in the UFD SYSCOM on Volume 1 of REV.
l= master disk.

1.5.4 NEW ERROR HANDLING ROUTINE

The following routine -- ERRPRS -- provides all the new error hand] ing
facilities.

ERRPR$ -- Print Standard System Error Message

Function

ERRPRS interprets a return code and, if non-zero, prints e standard
message followed by optional user text.

Calling Sequence

CALL ERRPRS (KEY, CODE , TEXT , IXTLEN, NAME,NAMLEN)

Parameters

KEY An integer specifying the action to take subsecuent to
printing the message. Possible values are:

KSNRIN-—-Exit to the system, never return to the calling
progrem.

KSSRIN--Exit to the system, return to the célling program
following an ‘S” command.

REV. @ (
a
d

g - 48 May 1976

PTU3@ PART 1 PRIMOS FILE SYSTEM, REV. 12

KSIRIN—-Return immediately to the calling program.

CODE An integer variable conteining the return code from the

routine that generated the error.

TEXT A message to be printed following the staenderd error message.

TEXT is omitted by specifying both TEXT and TXTLEN as @.

TXTLEN The length in characters of TEXT.

NAME the name of the program or subsystem detecting or reporting

the error. NAME is omitted by specifying both NAME anc

NAMLEN as €.

NAMLEN The length in characters of NAME.

Notes cn Usage

If CODE is @, no printing occurs, and ERRPR$ immediately returns to the

calling progrem. The format of the message for non-zero values of CODE

is:

<standerd text>. <userSs TEXT if any> (<NAME if any>)

The system standard text associated with CODE is not preceded by any

newlines or blanks end ends with a period. If TXTLEN is greater than

zero, this is followed by a blenk followed by no more then 64

characters of TEXT. If NAMLEN is greater than zero, this is followed

by a blenk and no more then 64 characters of NAME enclosed in

parentheses. The line is terminated with a newline.

If ERRPRS is called with the special error code ESNULL, no system

message is printed. Other perameters behave normally.

If ERRPRS is called with an unrecognized value of CODE, the standard

system message is ‘ERROR=ddddd’, where ddddd is the decimal value of

CODE. ‘This can be used to display user-defined errors. User defined

errors should use codes above 16806.

Exarples

1) Following a call to PRWFSS, if CODE=ESUNOP, the call

CALL ERRPRS (KSSRIN,CCDE, ‘DO A STATUS ’,11, “PRWFSS “,6)

would result in the messege:

REV. @ 36 - 49 May 1976

PLU36 PART] PRIMOS FILE SYSTEM, REV. 13

UNIT NOT OPEN. DC A STATUS (PRWFSS)

2) To print a user-defined error message:

CALL ERRPRS (KSIRIN, 10228, “MY MESSAGE °,10,6,8)

will print:

ERROR=1]10228. MY MESSAGE

Corpatibility

ERRPRS provices end extends the functionality of PRERR.

REV. @ (
a
r
=

t 5G May 1976

PTU2@ PART 1] PRIMOS FILE SYSTEM, REV. 13

].6 THE BOUNCE PACKAGE

1.6.1 FUNCTIONALITY

The "bounce" package is a set of subroutines that handle new file

system calls in circumstances in which the new file system subrout ines

are not available. ‘The package converts the new file system calls into

one or more cells to old file system routines, the effect of which will

be equivalent to the new file system calls. Circumstences under which

the bounce package is invoked are the following:

1) New file system cells made by @ program running under PRIMOS II

(DOS), SDOS, or RTOS.

2) A program running under any version of PRIMOS making a new file

system call that results in a remote access across the PRINET

network.

1.6.2 BOUNCE PACKAGE IMPLEMENTATION RESTRICTIONS

The following restrictions apply to programs using the bounce package:

1)

2)

4)

REV.
¢

The bounce package, even though it simulates the new file system

cells, will not work on new partitions.

The bounce package cannot enforce the owner-rights requirement

when accessing the current UFD -- only read or write priveledge

is required.

For calls thet may potentially generate more then one error

condition, the bounce package is not guarranteed to find the

errors in the seme order @S PRIMOS. For example, a calli to

SRCHSS has both a bad filename and a illegal unit number. PRIMOS

will return the ESBNAM -- illegal name -- error, while the bounce

package will return ESBUNT -- bad unit number.

On calls to CREASS,SPASSS GPASSS, and SATRSS, the bounce package

uses file unit 16. Calls to these routines with unit 16 open

will cause unpredictable results.

t
a
d

&
> I 51 Mey 1976

PTUS PART] PRIMOS FILE SYSTEM, REV. 12

1.6.3 LCADING THE BOUNCE PACKAGE

The bounce package resides in FINLIB (in UFD LIB) and will be correctly
loaded by specifying the LOADER “LIB” command. (The package will not,
howevet, actually be invoked except as noted in 1.6.1 above.)

t
a
r

&

!REV. @ 52 May 1976

PTU30 PART 1 PRIMOS FILE SYSTEM, REV. 13

1.7 SAMPLE PROGRAMS

1.7.1 WRITE SAM FILES

C SAMWRT BIN 29NOV76 PROGRAM TO WRITE A SAM DATA FILE
Cc -

C THE FILE IS 18@2 WORDS LONG WRITTEN FROM ARRAY BUFF

C
C RESTRICTIONS: SAMFIL SHOULD NOT EXIST BEFORE RUNNING PROGRAM

C

C
INTEGER*2 FUNIT] /* FILE UNIT TO BE USED

INTEGER*2 SAMFIL /* FILE TYPE FOR SAM FILE

INTEGER*2 BUFLNG /* BUFFER LENGTH

Cc
PARAMETER FUNIT1=1, SAMFIL=0, BUFLNG=1006

C
INTEGER*2 BUFF (BUFLNG) /* DATA BUFFER
INTEGER*2 TYPE /* CONTAINS FILE TYPE RETURNED BY SRCHS$$

INTEGER*2 NMREAD /* NUMBER WORDS READ OR WRITTEN BY PRWEFSS$

INTEGER*2 I
INTEGER*2 CODE /* HCLDS ERROR RETURN CODE

C
SINSERT SYSCOM>KEYS .F
C
C
C INITIALIZE BUFFER CONTENTS

DO 1% I= 1, BUFLNG

BUFF(I) = I

1é CONTINUE
C
C OPEN A NEW SAM DATA FILE CALLED “SAMFIL” IN CURRENTLY ATTACHED

C UFD FOR WRITTING ON FILE UNIT FUNITI
C

C SINCE KEYS.F (KEY DEFINITIONS) DEFINES THE KEYS AS PARAMETERS

C THE USE OF MULTIPLE MNEMCNIC KEYS WILL NOT GENERATE MORE CODE

C TAN THE USE OF NUMERIC KEYS. THE USE OF MNEMONIC KEYS IS

C RECOMMENDED AT ALL TIMES.
Cc

CALL SRCHSS (KSWRIT+KSNSAM+KSIUFL, ‘SAMFIL°,6,FUNIT1,TYEFE,

X CODE)
IF (CODE.NE.@) GC TO 9¢1b

IF (TYPE .NE. SAMFIL) GO IC 9406 /* ERROR

C
C WRITE 166@ WORDS FROM BUFF INIO THE NEW DATA FILE

C
CALL PRWFSS (KSWRIT,FUNIT1, LOC (BUFF) ,BUFLNG, INTL(@) ,NMREAD,

X CODE)
IF (CODE.NE.@) GO TO 9¢16

C KSCLOS FILE. THIS RELEASES UNIT FUNIT1 FOR RE-USE AND INSURES

REV. @ 36 - $53 Mey 1976

PLUZE PART 1] PRIMCGS FILE SYSTEM, REV. 13

C ALL FILE BUFFERS HAVE BEEN WRITTEN IC DISK.
C NOTE FRIMOS WILL NCI AUTOMATICALLY KSCLOS FILES ON ‘CALL EXIT’.
C
9600 CALL SRCHSS(KSCLOS, 6, @, FUNIT1, @, CODE)

IF (CODE.NE.@) GO TO 961@
C
C RETURN TO PRIMOS
C

CALL EXIT
END

REV. @ 2g - 54 Mey 1°76

PIUSE PART 1 PRIMOS FILE SYSTEM, REV. 12

1.7.2 WRITE DAME FILE

C DAMWRIE BIN 29NOV76 PROGRAM TO WRITE A CAM DATA FILE

Cc
C NOTE THAT THE ONLY DIFFERENCE FROM PROGRAM SAMFIL 15 THE

C ‘NEW FILE” KEY SUPPLIED TC SRCHSS IN CREATING THE FILE

C
C RESTRICTION: DAMFIL SHOULD NOT EXIST BEFCRE RUNNING PROGRAM

C
C

INTEGER*2 FUNITi /* FILE UNIT TO BE USED

INTEGER*2 DAMFIL /* FILE TYPE OF DAM DATA FILE

INTEGER*2 BUFLNG /* DATA EUFFER LENGTH IN WCRDS

PARAMETER FUNIT1=1, DAMFIL=1, BUFLNG=10¢6

INTEGER*2 BUFF (EUFLNG) /* DATA EUFFER

INTEGER*2 TYPE /* FILE TYPE RETURNED BY SRCHSS

INTEGER*2 NMREAD /* NUMBER WORDS READ OR WRITTEN BY PRWES$

INTEGER*2 CODE /* ERROR CODE RETURNED FROM FILE SYSTEM

INTEGER*2 I

C
SINSERT SYSCOM>KEYS .F
SINSERT SYSCOM>ERRD.F
C_

C
C INITIALIZE BUUFFER

C
DC 1@ I = 1, EBUFLNG

BUFF (I) = I
g CONTINUE

INSURE THAT THE FILE “DAMFIL® DCES NOT ALREADY EXIST

Q
O
A
a
A
A
-

CALL SRCHSS (KSREAD+KSIUFD, ‘DAMFIL °,6,FUNIT1,TYFE,COCE)

IF (CODE .NE. ESFNIF) GO TO 966@ /* FILE ALREADY EXISTS

C
C CGPEN A NEW DAM CATA FILE CALLED “CAMFIL’ IN THE CURREN'

C UFD FOR WEITING ON FILE UNIT FUNIT] (I.E. CREATE NEW DAM FILE)

C
CALL SRCHSS (KSWRIT+KSNDAM+KSIUFD, ‘DAMFIL*,6,FUNIT1,1YEE,

X CONE)
IF (CCDE.NE.@) GO TO 90160
IF (TYPE .NE. DAMFIL) STCP /* WILL NEVER STICP

C
C WRITE THE BUFFER INIO THE FILE

C
CALL PRWFESS (KSWRIT,FUNIT1, LOC (BUFF) ,BUFLNG, INIL(@) ,NMREAD,

X CODE)
IF (COLE.NE.@) GC TO 9014

C
C KSCLOS THE FILE AND EXIT

C

REV. 3€ - 55 May 1976

PIUZE FART] FRIMOS FILE SYSTEM, REV. 13

9208 CALL SRCHS$$(KSCLOS, €, ©, FUNI'Il, TYPE, CODE)
IF (CODE.NE.@) GO TO 916
CALL EXIT

C

9618 CALL ERRPRS (KSNRIN,CODE,@,@,6,®)
END

REV. @ 38 - 56 May 1976

PIUZE PART 1 PRIMOS FILE SYSTEM, REV. 12

1.7.2 KEAD A SAM OR DAM FILE

RECFIL BIN 29NOV76 READ SAM/DAM FILE, PRINT LARGEST INTEGER

THIS PROGRAM SHOWS HOW TC USE THE “CCDE” ERROR RETURN
MECRANISM AND SUBROUTINE ERRPRS TO PRINT ERRCR MESSAGES.

NOTE THAT PROGRAM DOESN “I CHECK IF THE DATA FILE IS SAM CR TAM,

TO USER’S PROGRAM, SAM OR DAM FILES ARE FUNCTIONALLY EQUIVALENT

EXCEPT FCR ACCESS TIME TO RAMDOM POINTS IN THE FILE

RETRICTIONS: NONE

M
Q
M
A
N
A
A
N
A
A
R
A
A
R
A
A
A
N
A
A
N
N
A

INTEGER*2 FUNIT /* FILE UNIT TO BE USED

INTEGER*2 DAMFIL /* TYPE OF DAM DATA FILE
INTEGER*2 BUFLNG /* LENGTH CF DATA BUFFER IN WORDS

PARAMETER FUNIT=]1, DAMFIL=2, BUFLNG=160

INTEGER*2 BUFF(BUFLNG) /* DATA BUFFER

INTEGER*2 TYPE /* FILE TYPE RETURNED BY SRCHS$$

INTEGER*2 NMREAD /* NUMBER WORDS READ CR WRITTEN BY PRWFS$

INTEGER*2 CODE /* ERROR CODE RETURNED BY FILE SYSTEM

INTEGER*2 LARGST /* LARGEST UNSIGNED INTEGER IN FILE

INLTEGER*2 FNAME(16) /* FILE NAME BUFFER

INIEGER*2 1,N

C
INTEGER*4 POSITN /* 32BIT INTEGER POSITION FOR PRWFS$

C
SINSERT SYSCOM>KEYS .F
SINSERT SYSCOM>ERRD.F
C
Cc
C INITIALIZE AND GET FILE NAME FROM TERMINAL

C
LARGST = -32767 /* LARGEST UNSIGNED INTEGER

10 WRITE (1,100@) /* FORTRAN UNIT 1 IS TERMINAL
1968 FORMAT (“TYPE FILE NAME’)
C

READ (1,101@) (FNAME(I), I=1,16)
G18 FORMAT (16Az)fe

a

OPEN FNAME IN CURRENTLY ATTACHED UFD FOR READING ON FILE UNIT 1
(NOT THE SAME AS FORTRAN UNIT 1). CHECK FOR ERRORS.

NOTE THAT THE NAME NEED NOT ACTUALLY BE 22 CHARACTERS LONG AS

TRAILING BLANKS ARE IGNORED.

Q
A
A
Q
A
A
A
N
N

CALL SRCHSS (KSREAD+KSIUFD,FNAME, 32,FUNIT,TYPE, CODE)

IF (CODE .EQ. @) GO TO 182 /* NO ERRORS

PRINT THE SYSTEM ERROR MSG AND IMMEDIATELY RTRN TO THIS PROGRAM

IF THE ERROR IS “FILE NOT FOUND’, GET ANOTHER NAME.A
O
M

REV. & 38 - 57 Mey 1976

PIU2E PART 1] PRIMOS FILE SYSTEM, REV. i2

C GIVE UP ON ALL OTHER ERKORS
Cc

CALL ERRPRS (KSIRIN, CODE, FNAME, 32, ‘“REDFIL’, 6)
IF (CODE.EQ.ESFNIF) GO TO 1@ /*NOT FOUND-GET ANOTHER NAME
GO TO 9816 /* ANOTHER TYPE OF ERROR - GIVE UP

C
.

C THE FILE HAS BEEN OPENED.
C MAKE SURE THE FILE IS NOT A DIRECTORY
C
166 IF (TYPE .GI. CAMFIL) GO TO 90@@ /* IS A DIRECTORY
Cc
C READ AN ‘OPTIMAL’ NUMBER OF WORDS UP TO BUFLNG WORDS FROM FILE.
C SET LARGST TO THE LARGEST UNSIGNED INTEGER IN THE FILE.
C CHECK FOR END-OF-FILE.
Cc
36 CALL PRWFS$ (KSREAD+KSCCNV, FUNIT, LOC(BUFF) ,BUFLNG,

X INTL(@) ,NMREAD,CODE)
IF (CODE .EQ. ESECF) GO TO 31 /* END-OF-FILE

IF (CODE .NE. @) GO TO 9818 /* SOME OTHER ERROR
2] DO 46 I= 1, NMREAD /* FOR EACH WORD ACTUALLY READ

IF ((LARGST.LE.@) .AND. (BUFF (I) .GE.@)) LARGST = BUFF(I)
IF (LARGST .LT. BUFF(I)) LARGST = BUFF (I)

4g CONTINUE
IF (CODE .NE. ESEOF) GO TO 36 /* MORE DATA IN FILE

C
C FIND OUT IF THE DATA FILE IS EMPTY
C GET CURRENT FILE POINTER POSITION WHICH IS NOW AT END-OF-FILE.
C IF THE POSITION IS @, THE FILE IS EMPTY
C

CALL PRWFSS (KSREOS, FUNIT, 6, @, POSITN, NMREAD, CODE)
IF (CODE .NE. @) GO 10 9610 /* ERROR
IF (POSIIN .GI. 2) GO TC 50 /* NOT A NULL FILE
WRITE (1,102@)

1630 FORMAT (“FILE EMPTY’)
GO TO $000 /* EXIT

C
C FILE NOT EMPTY. PRINT LARGEST INTEGER
Cc
56 WRITE (1,1@2@) LARGST
1@2@ FORMAT (“LARGEST INTEGER IN FILE IS °,I6)

GO TO 90G@ /* EXIT
C

C KSCLOS FILES EXIT

C PRINT ERROR MESSAGE IF NECESSARY
C

9818 CALL ERRPRS(KSIRIN, CODE, @, 6, “REDFIL’, 6)
C

9080 CALL SRCHSS$(KSCLOS, @, 6, FUNIT, TYPE, CODE)
IF (CODE.NE.@) GO TO 9@18
CALL EXIT
END

REV. @ t
o
e
o |

w
i
c
o

Lo
ad

o
n

mM he
t

h
o

‘
o
O

~
~

a
y

PTU=6 PART 1 PRIMCS FILE SYSTEM, REV. 12

1.7.4 CREATE A SEGMENT CIRECIORY

C CRISEG BIN Z9NCV76 CREATE A SEGMENT DIRECTORY

AND WRITE DATA FILE IN IT

RESTRICTIONS: SEGDIR SHCULD NOT EXIST EEFCRE RUNNING PROGRAM

A
A
A
A
N
Y

INTEGER*2 BUFLNG /* DATA BUFFER LENGTH

INTEGER*2 SAMSEG /* FILE TYPE OF SAM SEGMENT DIRECICRY

INTEGER*2 SGUNIT /* FILE UNIT FOR SEGMENT DIRECTORY

INTEGER*2 FUNIT /* FILE UNIT FOR CATA FILE

PARAMETER BUFLNG=1¢, SAMSEG=2, SGUNIT=1, FUNIT=2

INTEGER*2 BUFF (BUFLNG) /* DATA PUFFER

INTEGER*2 TYPE /* FILE TYPE RETURNED BY SRCHS$

INTEGER*2 NMREAD /* NUMBER WCRDS READ OR WRITTEN EY PRWwFS$

INTEGER*2 I
INTEGER*2 CODE /* RETURN CODE STORED HERE

INTEGER*2 CODEA /* SCRATCH COLE

C
SINSERT SYSCOM>KEYS .F
SINSERT SYSCOM>ERRD.F

C
C
C INITIALIZE DATA BUFFER CONTENIS

C
DO 1¢ I= 1, EUFLNG
BUFF (I) = I

& CONTINUE1
C
C OPEN A NEW SAM SEGMENT DIRECICORY CALLED “SAMDIR” IN CURRENTLY

C ATTACHED UFD FOR READING AND WRITING ON FILE UNIT SGUNIT.

C NOTE: SEGDIRS OPEN FOR WRITE ONLY WILL NCT BE HANDLED CORRECTLY

Cc
CALL SRCHSS (KSRDWR+KSNSGS+KSIUFL, ‘SEGDIR °,6,SGUNI1,TYPE,

4 CCDE)
IF (CODE.NE.W) GO TO 9586
IF (TYPE.NE.SAMSEG) GO 10 9582 /* ERROR--MUST BAVE EXISTED

C
C ENTER A NEW SAM DATA FILE (I.E. OPEN SAM DATA FILE FCR WRITING)

C IN THE JUST CREATED SEGMENT DIRECTORY. THE NEW DATA FILE

C WILL BE ENTRY @ IN THE SEGMENT DIRECTORY.

C
CALL SRCHSS (KSWRIT+KSNSAM+KSISEG, SGUNIT, @, FUNIT , TYPE , CODE)

IF (CODE.NE.@) GO TO 9586

C
C WRITE THE DATA BUFFER INTO THE JUST CREATED SAM FILE.

C KSCLOS THE CATA FILE.
C

CALL PRWESS (KSWRIT, FUNIT, LOC (BUFF) ,EUFLNG, INTL(@) ,NMREAL,

Xx CODE)

REV. 30 - 59 Mey 1976

PIUZ8 PART] PRIMCS FILE SYSTEM, REV. 12

IF (CCCE.NE.@) GC 10 956g
CALL SRCH$$ (KSCLOS, &, @, FUNIT, &, CODE)
IF (CODE.NE.&) GO 10 S5e@6

C

C REPLACE BUFF WITH NEW DATA
C

DO 2¢ I= 1, BUFING
PUFF (I) = I * 1g

g CONTINUE

CFEN A DIFFERENT NEW SAM DATA FILE ON FUNIT FOR WRITING
(I.E. ENTER ANOTHER FILE IN SEGMENT DIRECTORY). THIS IS DONE
IN TWO STEPS. FIRST THE FILE POINTER OF THE SEGMENT DIR UNIT IS
POSITIONED TO THE ENTRY NUMBER DESIRED. THE SRCHSS IS
CALLED AS ABOVE.

A
A
A
A
A
A
Y
N
L
Y

CALL SGDRS$ (KSSPOS,SGUNIT, 1, I, CODE)
IF (COBE.NE.@) GO TO 950@

IF (I .NE. -1) GO TO 9589 /* ERROR EXIT

NOTE THAT THE SEGMENT DIRECTORY OPEN ON SGUNIT HAS ONLY] ENTRY
(ENTRY &) AT THIS TIME. THUS, POSITICNING TO ENTRY 1
WILL FPOSITICN TO END-OF-FILE (NCT BEYOND) AND THE FOLLOWING
CALL TO SRCHS$ WILL CAUSE THE SEGMENT DIRECTORY TO BE EXTENDED
IN LENGTH BY ONE ENTRY.

A
N
A
A
A
N
Q
A
A
A
N

CALL SRCHS$ (KSWRIT+KSNSAM+KS$ISEG, SGUNIT, 6, FUNIT , TYPE ,CODE)
IF (CODE.NE.G) GO TO 9540

WRITE CATA INTC THE SAM FILE THE KSCLOS THE FILE

Q
A
M

CALL PRWFSS (KSWRIT,FUNIT, LOC (BUFF) ,BUFLNG, INTL(@) ,NMREAD,
X CODE)

IF (CODE.NE.G) GO TO 3580
CALL SRCHS$(KSCLOS, @, 0, FUNIT, @, CODE)
IF (CODE.NE.@) GO TO 9560

REPLACE THE BUFFER WITH NEW DATA

Q
Q
)

DO 38 I= 1, BUFLNG
BUFF (I) = I * 140

0 CONTINUE

MAKE THE SEGMENT DIRECIORY ITSELF LARGE ENOUGH TO CONTAIN
1@ ENTRIES. PLACE A SAM FILE IN THE 10TH ENTRY.

A
A
A

Ww

CALL SGDRS$ (KSMSIZ, SGUNIT, 18, @, CODE)
IF (CODE.NE.6) GO TO 9590

THE FILE POINTER ASSOCIATED WITH SGUNIT IS NOW AT END-OF-FILE.
A CALL TO SRCHS$ WITHOUT FURTHER POSITIONING THE SEGMENT
DIRECTORY ‘S FILE POINTER WOULD EXTEND THE SEGMENT DIRECTORY
AND ENTER THE NEW FILE AS TH 11TH ENTRY. THEREFORE, SGDRSSA
A
N
A
N
D

REV. @ a «e
2 - 62 May 1°76

PIUsu PARI 1 PRIMOS FILE SYSTEM, REV. 13

C MUST PE CALLED TC POSITION TO THE]6TH ENTRY.

C
CALL SGCDRSS (RSSECS SGUNIT, 16, I, CODE)
IF (COLE.NE.@) GO TO 958
IF (I .NE. @) SIOP /* FILE CANNOT BE PRESENT

C
CALL SRCHSS (KSWRIT+KSNSAM+KSISEG, SGUNIT, 6 ,FUNIT,TYPE , CODE)

IF (CCDE.NE.6) GO TO 9508
CALL PRWESS (KSWRI'T, FUNIT, LCC (BUFF) ,BUFLNG, INTL(6) ,MIREAD,

xX CCDE)
IF (CODE.NE.@) GO 10 9566
CALL SRCHSS (KSCLOS, @, @, FUNIT, TYPE, CODE)

IF (CODE.NE.@) GO TO 958
C
C KSCLOS SEGMENT DIRECTORY EXIT
Cc

CALL SRCHSS (KSCLOS, 6, 6, SGUNIT, TYPE, CCDE)

IF (CODE.NE.@) GO TC S5@e

CALL EXIT

C
C ERRCR EXIT. KSCLOS ALL UNITS. PRINT ERROR MESSAGE AND DO NOT

C ALLOW RESTART. ESNULL IS THE NULL SYSTEM ERROR, 1.E.,

C NO SYSTEM ERRCR MESSAGE IS PRINTED.

C
e586 CALL SRCHSS(KSCLOS, @, @, FUNIT, TYPE, CCDEA)

CALL SKCHSS$ (KSCLOS, @, &, SGUNIT, TYPE, CODEA)

CALL ERRPRS (KSNRIN, CODE, ‘UNEXPECTED ERROR“, 16, “CRTSEG *,6)

END

REV. & 30 - 61 May 1976

a
?PLUS PART] PRIMOS FILE SYSTEM, REV. 12

b
u -7.5 READ A LOGICAL RECORE "ROM A FILE

RELREC EIN 29NOV76 READ A LOGICAL RECORD FROM A FILE

PROGRAM READS LOGICAL RECCRD ‘N” FRCM A FILE CONSISTING
OF FIXED LENGTH RECORDS

IN THIS PROGRAM, THE FILE ACCESSED IS CONSIDERED TO CONTAIN AN
UNLIMITED NUMBER OF LOGICAL RECORDS. EACH RECORD CONTAINS ‘M’
WORDS. THE PROGRAM READS AND PRINTS IC THE TERMINAL THE
CONTENTS OF RECORD NUMBER N AS M INTEGERS. THE FIRST RECORD
OF A FILE IS RECCRD NUMEER @ (ZERO).
NOTE THAT A LOGICAL RECORD IS MERELY A GROUPING OF WCRDS IN A
FILE. THE LOGICAL RKECCRD SIZE HAS NO RELATION TO THE PHYSICAL
RECORD SIZE OF THE DISK.

RESTRICTIONS:
1. RECORD SIZE MUST BE BETWEEN] AND BUFFER LENGTH
2. RECORD NUMBER MUST BE BEIWEEN @ AND 22767
3. THE RECORD MUST BE IN THE FILE
4, THE FILE MUST PREVICUSLY EXIST
5. THE FILE MUST BE A DATA FILE (SAMFIL OR DAMFIL)

A
N
N
A
N
N
A
A
N
A
N
A
N
A
R
A
N
A
N
A
R
N
A
|
A
N
A
D
A
N
|
A

INTEGER*2 FUNIT] /* PRIMOS FILE UNIT USED FOR DATA FILE
INTEGER*2 BUFLNG /* LENGTH OF DATA BUFFER

C
PARAMETER FUNIT1=1, BUFLNG=166u

C
INTEGER*2 BUFF (BUFLNG) /* DATA BUFFER
INTEGER*2 FNAME(16) /* FILE NAME BUFFER
INTEGER*2 RECSIZ /* NUMBER WORDS IN A LOGICAL RECORD
INTEGER*2 RECNUM /* LOGICAL RECORD NUMBER
INIEGER*Z TYPE /* FILE TYPE RETURNED BY SRCHSS
INTEGER*2 NMREAD /* NUMBER WORDS READ, RETURNED BY PRWFSS
INTEGER*2 CODE /* ERROR STATUS RETURNED BY FILE SYSTEM
INTEGER*2 I

C .
INTEGER*4 POSITN /* 32BIT WORD NR USED AS POS TO PRWFSS

C
Cc

SINSERT SYSCOM>KEYS .F

SINSERT SYSCOM>ERRD.F
C
C

C ASK FOR FILE NAME
C
1é WRITE (1, 1686) /* FORTRAN UNIT] IS TTY
1666 FORMAT (“TYPE FILE NAME’)
C
C READ FILE NAME
C

READ(1,1@10) (FNAME (I) ,I=1,16)

REV. @ 38 - 62 May 1976

PLUsé PART 1 PRIMCS FILE SYSTEM, KEV. 1:

Gl€ FORMAT (16AzZ)

~-w2 . roar

1
C
C OPEN FNAME IN CURRENT UFD FOR READING CN FILE UNIT FONITI
C ,

CALL SRCHSS (KSREAD+KSIUFL, FNAME, 22, FUNIT], TYPE, COLE)

IF (CCODE.NE.€) GO TC 1bb¢

C ASK FOR LOGICAL RECCRD SIZE

26 WRITE (1,1628)
1929 FORMAT (“TYPE RECORD SIZE’)

READ (1,103) RECSIZ
1@3@ FORMAT (16)

IF (RECSIZ .GE. 1 .AND. RECSIZ .LE. BUFLNG) GO TO ce

WRITE (1,1046)
1@4@ FCRMAT (“BAD RECCRD SIZE’)

GC TO 2

ASK FOR RECCRD NUMEER. FIRST RECCRD IS NUMEERED € (ZERC)

6 WRITE (1,1256)
GS5G FORMAT (“TYPE RECORD NUMBER’)

REAL (1,163¢@) RECNUM
IF (RECNUM .GE. @) GO TC 25
WRITE (11,1651)

1051 FORMAT (“BAD RECCRD NUMBER’)
GO TO 26

C
C CALCULATE THE 22-RIT WCRE NUMBER OF THE FIRST WCRD IN TRE

CESIRED RECORD. NOTE THAT IF BOTH RECSIZ AND RECNOUM ARE BOTH

FOSITIVE 16BRIT NUMBERS, THE 22BI17 WORD NUMBER MUST ALSOEE

ECSITIVE.

Dwi Veet =EALAS

POSITIONING MAY BE DONE TO AN ABSOLUTE WORD NUMEER CK RELATIVE

TO THE CURRENT EFOSITION. SINCE A JUST CPENED FILE IS ALWAYS

POSITIONED TO TOP-CF-FILE AND THE CALCULATED WORD NUMBER WILL

NEVER BE NEGATIVE, THE ARGUMENT FOR FOSITION ‘TO PRWES$ WILL

C BE THE SAME FCR BCTH CALLS IN THIS PROGRAM.

C
35 POS ITN=INTL (RECS1Z) *INTL (RECNUM) /* POSITN IS INTEGER*4

IF (POSIIN .Gr. 22767) GC TO lé& /* ABSOLUTE POSITIONING

A
A
A
Q
A
A
N
A
N
A
N
A
N

C
C RECORD LESS THAN 22767 WORDS FROM 1HE EPEGINNING, USE RELATIVE

C POSITIONING.
C NOTE THAT ABSOLUTE POSITIONING COULD HAVE BEEN USED FOR A

C RECORD ANYWHERE IN THE FILE, NOT JUST FOR THOSE RECORLS

C BEYOND WORD 32767. RELATIVE IS SHOWN HERE ONLY FOR EXAMPLE.

C
C NOTE ALSO THAT RELATIVE POSITICNING CCULD BE USED TO POSITION

C TO ANY WORD IN THE FILE, GIVEN THE RESTICTICNS CN RECSIZ AND

C RECNUM.
Cc
C WHEN REL POSITIONING IS USED, THE POS ARGUMENT (PCSITN HERE)

REV. @ 30 - 62 May 1976

a
?

PIU PART] PRIMOS FILE SYSTEM, REV. 12

IS CONSIDERED TO RE A SIGNED 22-BIT INIEGER.

A
O

CALL PRWE$$ (KSREAD+KSPRER, FUNIT1, LOC (BUFF) ,RECSIZ,POSITN,
A NMREAD, CCDE)
GO TO 26@ /* SKIP OVER ABSOLUTE POSITION EXAMPLE

RECORD IS MORE THAN 32767 WORDS FROM THE BEGINNING OF FILE, USE
ABSCLUTE FOSITICNING.

WHEN AESOLOUTE POSITIONING IS USED, POSITION ARGUMENT (POSITIN)
IS CONSIDERED TO BE AN SIGNED 32-BIT INTEGER. -
NOTE THAT THE ESBOF ERROR (BEGINNING OF FILE) CAN OCCUR.

M
O
A
A
N
A
N
A
A
N

6@ CALL PRWESS (KSREAD+KSPREA, FUNIT], LOC (BUFF) ,RECSIZ,POSIIN,
xX NMREAD, CODE)

C
260 IF (CODE .NE. 8) GO TO 306 /* ERROR DETECTED
C
C HAVE READ RECORD, NOW TYPE IT.
Cc

WRITE (1,1066) RECNUM, RECSIZ
1668 FORMAT(“RECORD °,16,° CONTAINS °,16,° ENTRIES AS FOLLOWS’)

WRITE(1,167@) (BUFF(I), I=1,RECSI2)
1070 FORMAT (1017)
C
C RETURN TO DOS AFTER CLOSING THE FILE
Cc
Z25@ CALL SRCHS$(KSCLOS, @, @, FUNIT1, TYPE, CCDE)

IF (CODE.NE.G) GO TO 16@@
CALL EXIT
GO TO 16 /* START COMMAND RESTARTS PROGRAMC

C ERROR WHILE ATTEMPTING TO READ THE RECORD.
C
206 CALL ERRPRS(KSIRIN, CCDE, @, 6, “RDLREC’, 6)

IF (CODE .NE. ESEOF) GC TO 258 /* EXIT IF NOT END-OF-FILE
Cc
C END-CF-FILE REACHED.
C REWIND FILE AND TRY AGAIN
C

CALL PRWFSS (KSPOSN+KSPREA, FUNIT1,@,0, INTL(@) ,NMREAD,
x CODE)

IF (CODE.NE.£) GO IC 1600
GO TO 26

C

1680 CALL ERRPRS (KSNRIN,CODE,0,8,0,8)
END

REV. @ 3¢ - 64 Mey 1976

PIUSt PART] PRIMCS FILE SYSTEM, REV. 12

1.7.6 Kkeac File in Segment Directory

RECSEG EINK Z9NCV76 READ FILE IN "h
y

w C
y 2 Pr ue e
a

o e
+
a c
y
© K
e a

THIS ERCGRAM READS FILE NUMBER N IN SEGMENT DIRECTORY AND

TYPES wCRD NUMBER M IN THAT FILE. THE FIRST FILE IN THE

DIRECTORY IS FILE NUMBER @. THE FIRST WORD IN THE FILE IS

WCRD NUMEER &.

RESTRICTICNS:
. THE SEGMENT DIRECTORY FILE MUST EXIST

. THE FILE NUMBER MUST BE BETWEEN © AND 32767

. THE FILE MUST BE IN THE SEGMENT DIRECTORY

. THE WORD NUMBER MUST BE BEIWEEN & AND 22767

. THE WCRD MUST BE IN THE FILE.

A
N
M
N
A
N
A
A
N
A
N
A
N
A
N
A
A
N
G

C
n

w
h

G
2
)
A
O
e
e

INTEGER*2 FUNIT /* PRIMCS FILE UNIT FOR DATA FILE

INTEGER*2 SGUNIT /* PRIMCS FILE UNIT FOR SEGMENT DIRECTORY

INIEGER*2 SAMSEG /* FILE TYPE OF SAM SEGMENT DIRECTORY

INTEGER*2 DAMSEG /* FILE TYPE OF DAM SEGMENT DIRECTORY

PARAMETER FUNIT=2, SGUNIT=1, SAMSEG=2, DAMSEG=3

INTEGER*2 BUFF /* DATA BUFFER
INTEGER*2 SEGDIR(16) /* NAME OF SEGMENT DIRECTORY BUFFER
INTEGER*2 FILNUM /* FILE NR (ENTRY NR) OF FILE IN SEGDIR

INIEGER*2 WRDNUM /* WORD NUMEER IN DATA FILE TO PE READ

INIEGER*2 COLE /* ERROR CODE RETURNED BY FILE SYSTEM
INIEGER*2 TYPE /* FILE TYPE RETURNED BY SRCHSS
INTEGER*2 NMREAD /* NR WORDS READ/WRITTEN/RTRNED BY PRWFS$
INTEGER*2 I

C
SINSERT SYSCCOM>KEYS .F
SINSERT SYSCOM>ERRD.F
Cc
Cc
C INSURE FILE UNITS TO BE USED ARE KSCLOSD
C ASK FOR AND READ SEGMENT DIRECTORY NAME FROM TERMINAL
C
10 CALL SRCHSS (KSCLOS, @, @, SGUNIT, @, CODE)

IF (CODE.NE.@) GO TO 18¢
CALL SRCHSS(KSCLOS, ¢, @, FUNIT, @, CODE)
IF (CODE.NE.2) GO TO 1€@
WRITE (1,1@08)

16@@ FORMAT (“TI'YPE SEGMENT DIRECTORY NAME ’)
READ (1,1016) (SEGDIR(I), 1=1,16)

1@1@ FORMAT (16A2)
Cc
C CPEN THE SEGMENT DIRECTORY FOR READING ON SGUNIT
C

CALL SRCHSS (KSREAD+KSIUFD, “SEGDIR”, 6, SGUNIT, TYPE, CCDE)
IF (CODE.NE.@) GO 10 180

REV. @ 3¢ - 65 May 1976

PTU@ PART 1] PRIMOS FILE SYSTEM, REV. 12

TYPE CONTAINS THE FILE TYPE OF THE FILE JUST OPENED.
MAKE SURE THE FILE IS EITHER A SAM OR DAM SEGMENT DIRECTORY.
ALLOWABLE TYPE VALUES ARE 2 AND 2,

A
A
A
A
O

IF (TYPE .EQ. SAMSEG) GO IC 26
IF (TYPE .EQ. DAMSEG) GO TO 26

C NOT A SEGMENT DIRECTORY - TRY AGAIN

WRITE (1,1626)
1@2@ FORMAT(“FILE IS NOT A SEGMENT DIRECTORY *)

G TO 16
Cc
C ASK FOR FILE (ENTRY) NUMBER IN SEGMENT DIRECTORY
Cc

26 WRITE (1,138)
163@ FORMAT (“TYPE FILE NUMBER’)

READ (1,1048) FILNUM
1040 FORMAT(I6)

IF (FILNUM .LT. @) GO TO 26

C ASK FOR WORD NUMBER IN DATA FILE TO READ

36 WEITE (1, 1035)
1835 FORMAT (“TYPE WORD NUMBER’)

READ (1,1848) WRDNUM
IF (WRDNUM .LT. @) GO TO 30

TRY TO POSITIONIC WORD NUMBER IN THE SEGMENT DIRECTORY.
IF END-OF-FILE REACHED, FILE IS NOT IN SEGMENT DIRECTORY.
SGDRS$ RETURNS THE VALUE 1 IN THE 4TH ARGUMENT (TYPE) IF A
FILE IS ENTERED IN THE ENTRY POSITION. THIS PROGRAM DOES NOT
CHECK THE VALUE, SINCE SRCHS$ WILL RETURN THE PROPER ERROR CODE
(ESFNIS - FILE NOT FOUND IN SEGMENT DIRECTORY) ANYHOW.

A
A
A
A
N
A
A
N

CALL SGDRS$$ (KSSPOS, SGUNIT, FILNUM, TYPE, CODE)
IF (CODE .EQ. ESEOF) CODE = ESFNTS /* FILE NOT FOUND
IF (CODE .NE. @) GO TO 100

OPEN FILE IN SEGMENT DIRECTORY FOR READING

Q
A
A
Q

CALL SRCHS$$ (KSREAD+KSISEG, SGUNIT, 0, FUNIT , TYPE , CODE)
IF (CODE .NE. @) GO TO 10@

PRINT THE WORD, KSCLOS THE FILES, AND RETURN TC PRIMCS

Q
A
M

WRITE (1,1650) WRDNUM,FILNUM, (SEGDIR(I), I= 1,16) ,BUFF
1950 FORMAT (“WORD’,I6,° OF FILE (’,16,°) IN ", 16A2,

X “CONTAINS “, 16)
50 CALL SRCHS$$(KSCLOS, @, @, FUNIT, @, CODE)

CALL SRCHS$(KSCLOS, @, 8, SGUNIT, @, CCDE)
CALL EXIT

REV. @ 36 - 66 May 1976

PIU36 PART 1] PRIMOS FILE SYSTEM, REV. 13

GO TC 16 /* START COMMAND RE-STARTS PROGRAM
a
a

C COMMON ERROR HANDLER

C NOTE THAT THE NEW FILE SYS PROPERLY DIFFERENTIATES THE VARIOUS

C ERRORS WHICH FORMERLY WERE GROUPED UNDER CLD ERROR CODE ‘SQ’

C
166 IF (CODE.EQ.ESFNTS) GO TO 110 /* FILE NOT FOUND IN SEGDIR

IF (CODE .EQ. ESEOF) GO TO 12@ /* END-OF-FILE

CALL ERRPRS (KSIRTIN,CODE,@,&, “REDSEG’,6) /* PRINT ERROR MSG

GOTO 5@ /* KSCLOS FILES EXIT

Cc
C FILE NOT FOUND IN SEGMENT DIRECTORY

C LET THE USER TRY AGAIN
Cc
110 WRITE(1,166@) FILNUM, (SEGDIR(I), I=1, 16)

166@ FORMAT (‘FILE (°,16,°) NOT FOUND IN °,]6A2)
GO TO 1@ /* RE-TRY

C
C END-OF-FILE
C CODE WILL CONTAIN ESEOF ONLY WHILE TRYING TO READ

C THE DATA FILE. ALLOW RE-TRY.

Cc
128 WRITE(1,1@7G) WRDNUM,FILNUM, (SEGDIR(I) ,J=1,16)

1670 FORMAT (‘WORD’,1I6,° NOT IN FILE (°,16,°) IN °,16A2)

GO TO 16 /* RE-TRY

Cc
END

REV. 0 32 - 67 May 1976

a
’

PTUZ6 PART 1 PRIMOS FILE SYSTEM, REV. 1%

1.@ INTERNAL FILE SYSTEM FORMATS

The following describes the internal formats of all disk records for
beth the old end new file system. These have been collected together
for ease in noting the changes that heve been made. User programs will
normelly have no need to refer to the internal file system formets.
All numbers ere decimal unless preceded by a ‘:°. Where possible,
field nemes are the same es those used by the internal file system
routines.

1.&.1 DSKRAT FORMATS

1.8.1.1 DSKRAT Format -- Old Partitions

GO | 5 | NUMBER CF WORDS IN DSKRAT HEADER = 5
1 |_RECSIZ | DISK RECORD SIZE (448 or 164@)
2 | NMRECS | NUMBER RECORDS IN PARTITION
3 | UNUSED | UNUSED
4 | NHEADS | NUMBER HEADS IN PARTITION
5 | DATA | START OF DKSRAT DATA (ONE BIT/RECOERD)

|

1.8.1.2 DSKRAT Format -- New Partitions

Qo | @ | NUMBER WORDS IN HEADER = 8
1 | RECSIZ | RECORD SIZE
2 |NMRECS”| NUMBER RECORDS IN FARTITON (TWO WCRDS)

| |
4 | NHEADS | NUMBER HEADS IN PARTITION
5 |RESERVED| RESERVED
6 |RESERVED| RESERVED
7 |RESERVED| RESERVED
@ | DATA| START OF DSKRAT DATA (ONE BI'l/RECORD)

| wee. |

1.8.2 RECORD HEADER FORMATS

Note: recorca header formats ere the same for new and old partitions.
The formet of a record header is a function of the physicel record
size.

REV. © 26 - 68 May 1976

PIUSE PART 1] PRIMOS FILE SYSTEM, REV. 13

1.8.2.1 Record Header Format -- 448-word Recorcs

@ | REKCRA | RECORD ADDRESS (CF THIS RECORD)

1 | REKBRA | RA CF DIRECTORY ENTRY OR FIRST RECCRD

2 | REKFPT | RA CF NEXT SEQUENTIAL RECCRD

> | REKBPT | RA OF PREVICUS RECORD

4 | REKCNT | NUMBER CATA WORDS IN FILE

S | REKTYP | ‘TYPE CF THIS FILE

6 |REKLVL | INDEX LEVEL FOR NEW PARTITION DAM FILES

7 |RESERVED| RESERVED

1.8.2.2 Reccrd Header Formet -- 1649-worc Records

@ | REKCRA | RECORD ADDRESS OF THIS RECORD (TWO WCRDS)

| |
2 | REKBRA | BEGINNING RECCRD ADDRESS (TWO WCRCS)

| |
4 |"REKCNT | NUMBER DATA WORDS IN THIS RECORD

5 | REKTYP | TYPE OF THIS FILE

6 | REKFPT | RA OF NEXT SEQUENTIAL RECORD (TWO WORDS)

| |
8 |"REKEPT | RA OF PREVIOUS RECCRD (TWO WORDS)

| |
1g |"RERLVE | INDEX LEVEL FOR NEW PARTITION DAM FILES

11 | |
| |
|RESERVED| RESERVED (FIVE WORDS)

| |
15 | |

Notes

1) All disks except Storage Module have 448-word records. Storage

2)

Modules have 1@4@-word records.

The BRA of the first record in a file points to the beginning record

address of the directory in which the file entry appears. In all

other records, the BRA points to the first record of the file.

FORPIR contains the address of the next sequential record in the

file or @ if it is the last record in the file.

RACPTR contains the address of the previous record in sequence or @

if it is the first record in the file.

REV. @ ; 30 - 69 May 1976

PTU 3G PART] PRIMCS FILE SYSTEM, REV. 12

5) FILTYP is velid only in the first record of e file. Legal velues
are:

M
(4
9
A
D

be
!
E
> SAM File

DAM File

SAM Segment Directory
DAM Segment Directory
User File Directory (UFD)

6) If the file is the record zero bootstrap (BOOT) or the disk record
availability table (DSKRAT or volume name) and the disk has eae 104¢
record size (Storage Module), bit 1 (:1680€0) of FILTYP will be set.

7) DAM files on new partitions are organized somewhet differently from
the above -- see Section 1.8.5.

1.8.5 UFD HEADER AND ENTRY FORMATS

1.8.3.1 Old UFD Header Format

=
> |

|
|
|
|
|
|
|7

&
CPASSW

NPASSW

RESERVED

SIZE OF HEADER -- 8 WORDS
OWNER PASSWORD (THREE WORDS)

NON-OWNER PASSWORD (THREE WORDS)

RESERVED

1.8.3.2 New UFD Header Format

OPASSW

NPASSW

RESERVED

REV. Q

|
|
|
|
|
|
|
|
|
|
|

ECW (SEE NOTE 1] BELOW)
OWNER PASSWORD (THREE WORDS)

NON-OWNER PASSWORD (THREE WORDS)

RESERVED (SIXTEEN WORDS)

30 - 7@ May 1976

PTU3@ PART 1] PRIMCS FILE SYSTEM, REV. 1:

1.8.3.3 Cld UFD Entry Formet

g | BRA | BEGINNING RECORD ADDRESS

1 | FILE | FILENAME (THREE WCRDS)

| |
| NAME |

4 | SPACES | TWO BLANKS FOR NAME EXPANSION (RESERVED)

5 [PROTEC | PROTECTION (OWNER/NON-OWNER)

Notes

In an olé UFD, the high-order eight bits of PROTEC ere the owner rights

stored in complemented form (b=>owner has right). The low-crder eight

bits are non-cwner protection, stored in true form (@=>ne right). | Cn

creation, PROTEC=0. After a “PROT 7 6°, PROTEC=:174606.

1.8.3.4 New UFD Entry Formet

@ | ECW | ENTRY CONTROL WCRD (TYPE/LENGTE)

1 | BRA | BEGINNING RECORD ADDRESS (TWwC WCRDS}

| |
3 |RESERVED| RESERVED (THKEE WORDS)

| |
| |

6 | PROTEC | PROTECTION (OWNER/NCN-OWNER)

7 |RESERVED| RESERVED FOR FUTURE USE

8 | DATMOD | DATE LAST MOLIFIEL (YYYYYYYMMMMDDDDD)

9 | TIMMCD | TIME LAST MODIFIED (SECCNDS-SINCE-MIDNIGHT/4)

10 | FILTYP | FILETYPE

11 |” SCw | SUBENTRY CONTROL WORD FOR FILENAME

z IF |
| I |
| L |
| EB |

| ... | FILENAME (1-16 WORDS, BLANK FADDED)

IN |
| A
| |

N | E |

Notes

1) The Entry Control word (ECW) consists of two eiaht-bit subfielcs.

The top eight bits indicate the type of the following entry es

follows:

g Old UFD Header

1 New UFD Header

2 vacant Entry
2 New UFD File Entry

REV.° @ 30 - 71 May 1976

PIU20 PART] PRIMCS FILE SYSTEM, REV. 12

2)

(
a
)
—

4)

9)

1.8.4

The low-orcer eight bits give the size of the entry including theECW itself.

The bits in PROTEC ere stored in true form (Q=> no right) for bothowner and non-owner fields.

The file type field is es before (see Cle Record Header Formet) withfollowing additional bits:

BIT MEANING WHEN BIT IS ON
1 File hes 16-word header (DSKRAT and BOOT only).
4 Special file (BOOT, DSKRAT, MFD, BADSPT).

The Subentry Control Word (SCW) consists of two eight-bit subfields,The top 8 bits are @, indiceting subentry type 0. The low-order g
bits give the size of the subentry including the SCW itself.

N.E.: UFD entries are reused by the new file system. This means
thet a new entry will not necessérily appeer at the end of the UFD.

SEGMENT DIRECTORY FORMATS

1.8.4.1 Old Segment Directory Format

| | BRA OF FIRST ENTRY IN DIRECTORY
| | BRA OF SECOND FILE
| e@@8 | NULL ENTRY
| |
|

BkA OF LAST FILE IN DIRECTORY

1.8.4.2 New segment Directory Formet

h
o

8
&

N
h
=

[| ERA¢G | BRA OF FIRST FILE IN DIRECTORY (TWO WORDS)
| |
| BRAT | BRA OF SECOND FILE IN DIRECTORY (TWO WORDS)
| |
| 6666 | NULL ENTRY (TWO WORDS)
| ggeo |
| eene |

| |
| BRAn | BRA OF LAST FILE IN DIRECTORY (TWO WORDS)
| |

REV. & 36 - 72 May 1976

PIU26 PART] PRIMCS FILE SYSTEM, FEV. 1:

Nctes

The only cGifference between old end new cirectories is that each entry

hes been expanded to two words. A null entry in @ new directory is a

1.8.5 DAM FILE CRGANIZATION

In old-style DAM files, the first physical record of the file was

reserved to be er index to the first 44@ or 1024 (depending on physical

record size) records in the file. when this index was filled, however,

accesS to subsequently added records beceme sequential. For exemple,

in the file shown below, records @-429 can be accessed Girectly.

Records 446 end above must be searched for sequentially starting with

record 439,

INDEX DATA RECORDS

| BRAG |---> RECORD @
| BRA] |---> RECORD]
|
|... |
| |
| B439 |---> RECORD 439---> RECORD 448---> RECORD 44]---> ...

The major difference between new and oid DAM files is that the incex is

not limited to e single record, but can grow into a multi-level tree.

(Also, since pointers are now two words each, each index record holes
half the number of pointers in olé index records.) An index can grow
to any size, and any date record can be Girectly accessed. ‘the
following paragraphs explain how this multi-level index is built.

The handling of a DAM file on a new partition is identical to that on
en old partition up to the point et which the index record is full and
enother record is to be added to the file. At this point the following

actions take place.

1) Three new records are obtained from the file system. One of
these records is to be the new date record, the other two are

used to construct the seconc index level.

2) The index entries from the full index record are copied into one
of the other new records. This record is to become the first

index record of the new index level.

REV. @ 36 - 73 May 1976

PTUS0 PART] PRIMCS FILE SYSTEM, REV. 13

a
d

~
~ The ole index record is reinitialized to contain two pointers to

the two index records on the new level.

4) The other new index record is initialized with a single entry
pointing to the new data recerd.

5) Forward, backward, and father pointers are set up as shown in the
diagram below.

At this point, the creation of the new index level is complete. Note
thet the BRA in the directory entry for the DAM file still points to
the original index record, which is now the top of a two-level index.

| DIR | DIR = UFD or Segment Directory

~f = NULL POINTER
|
|

i
INDEX LEVEL 2: IlJ |-6 I

IK | | = FATHER POINTER
G-| |Sa

| I

a
INDEX LEVEL 1: JIL |--KIN [-&

IM | | |
O-|...1---|__|

| I I

rs |
DATA LEVEL: L| |--M| |---. ..--N| |-2

| | | | | |
v- | |---| |---. ..---| |

The DIR entry points to the original index record (record “I’), which
now conteins just pointers to records ‘J° end ‘*K’ -- the two records on
the index level just creeted. Record ‘J” contains the data record
pointers originally in ‘I° -- ‘L’, “M’, etc. Record ‘K’ contains a
Single pointer to the newly creeted data record ‘N’.

Once an index level is created, it is never deleted until he file
itself is deleted -- there will elg paragraphs explain how this
multi-level index is built.

REV. &@ 32 ~ 74 May 1976

PIUZE PART 1 PRIMOS FILE SYSTEM, REV. 12

The handling of a DAM file on a new partition is identical to thet on

en old partition up to the point et which the incex record is full anc

another record is to be added to the file. At this point the following

actions teke place.

1) Three new records are obteined from the file system. One of

these records is to he the new data record, the other two ere

used to construct the second index level.

Nh
) The index entries from the full index record are copied into one

of the other new records. ‘This record is to become the first

index record of the new index level.

t
a
)
a

The old index record is reinitializec to contein two pointers to

the two index records on the new level.

4) The other new index record is initielized with a single entry

pointing to the new deta record.

5) Forwerd, backward, and father pointers are set up as shown in the

diagram below.

At this point, the creation of the new index level is complete. Note

that the BRA in the directory entry for the DAM file still points to

the original index record, which is now the top of a two-level index.

| DIK | DIR = UFD or Segment Directory

| |~—

| -@ = NULL POINTER

|
INDEX LEVEL 2: Il0|-0 I

IK | | = FATHER EOINTER

g-| |—

| I

to IL
INDEX LEVEL 1: JIL {--KIN |-

IM | | |
g-|...|---l__|

| I I

to IL |
DATA LEVEL: LI |--M| |---...--NI |-2

ee ee |
@-| |---| |---...---I_|

REV. @ 30 - 75 May 1976

PIU=6 PART] PRIMCS FILE SYSTEM, REV. 13

The DIK entry points to the original index record (record I’), which
now contains just pointers to records ‘J° end ‘K’ -- the two records on
the index level just created. Record ‘J’ contsins the data record
pointers originally in ‘I’ -- ‘L’, ‘M’, etc. Record ‘K’ conteins a
single pointer to the newly created data record ‘N’.

Once an index level is creeted, it is never deleted until the file
itself is deleted -- there will always be at leest one record on each
level. If the file is empty, there will be exactly one record on each
index level. This is to avcid undue thrashing when records ere being
added and deleted neer the threshold of an index’s cépecity. (Note
thet the overhead cf the "unnecessary" levels is only one record per
level.)

REV. @ 36 - 76 May 1976

PIU36 PART Zz PRIMCS FILE SYSTEM, REV. 1 q
a
)

PART 2

FUIIL, REV. 12 & 13

2.1 INTRODUCTION

FUTIL has been completely revamped for rev 12 to use new file system

calls exclusively, thus allowing it to work on both old and new
partitions. Because of the new file system, the operation of FUTIL has
changed in some minor ways. In addition, several new features heve

been added in accordance with the philosophy that FUTIL is a general
file system utility and not just @ copy and delete program.

The minor functional differences are:

1. To enable listing end copying from write protected disks and to
avcid updating dete/time modified (DIM) stamps, FUTIL will not
attempt to change access rights to files on these cperations.
Therefore, if any files or directories have even owner access

rights (i.e. no read rights), FUTIL will report a "NO RIGHT"
error. The user does, however, have the ability to force FUTIL to

read files on LISTF and COPY operations, but so doing will update
ell DIM’s on listed or copied directories and further will fail on

write protected disks.

2. Since the new file system ellows up to 32 character names, all file
names must be typed exactly as they are. For example, "DELETE
B ABCDE" would have deleted the file "B ABCD" at rev 1l1, but will
report "NOT FOUND" at rev 12. Of course,on a new partition, the
file "EB ARCDE" will be deleted and, if present, "B ABCD" will not

be deleted. ~

3. At rev 11, some problems existed in the interaction of ATTACH, TO,

and FROM. These problems have been either fixed or clarified for
rev 12. In short, both TO and FROM will not affect the other and
neither will affect the ATTACH point (i.e. HOME UFD). ATTACH,
however, will reset any FROM or TO name beginning with "*" to be
simply "*", thus avoiding transferring improper tree names to a new
home UFD. Absolute TO and FROM names (i.e. those beginning with a
name rether than *) will not be affected by ATTACH.

4. At rev 11, FUTIL would always abort processing upon encountering an
error. Because of this, it was possible to end up with partially
copied trees, for example, which could o only be completed by
redoing the entire operation. At rev 12, FUTIL will report any
error conditions, and, with the exception of DISK FULL on copies,
continue the operation. As an example of the utility of continuing
on errors, it is now possible to UFDDEL all unprotected files and
directories while leaving the protected ones intact.

REV. @ 38 - 77 May 1976

PTU3@ PART 2 PRIMOS FILE SYSTEM, REV. 13

5. Segment directories in the new file system are addressed in terms
of entry number rather than record number, word number. Therefore,
the syntax of names within segment directories has been changed
from (rec, word) to (entry). ‘Thus, the fifth entry in a_ segment
directory is (5) and last entry is (65534). Note that (65535) is
not a legal entry as the maximum size of a directory is 65535
‘including the entry (@).

The new features added, in summary, are:

l. Specification of LISTF output file name (LISTSAVE)

2. Scanning for files of a given name (SCAN)

3. Conditional file delete on prefix match (CLEAN)

4. Mode for forcing access rights on LISIF and copies on "from"
directories (FORCE)

5. Ability to create new, empty UFD’s on "to" directory (CREATE)

6. Ability to protect a file or directory (PROTECT), files and
directories, to any depth (UFDPRO), and an entire sub-tree s

eny depth (UFDPRO), and an entire sub-tree structure (TREPRO)

7. Up to 32 character names on new partitions

8. Ability to specify current logical disk in absolute tree
names (<*> disk name)

9. LISTF option to print passwords of sub-directories

19. LISTF option to print the time/date modified stamp (DTM)

2-2 NAMING CONVENTIONS

The PRIMOS file structure on any disk pack is a tree structure where
the MFD is the root or trunk of the tree, the links between directories
and files or subdirectories are branches, and the directories and files
are nodes. A directory tree consists of all files and subdirectories
that have their root in that directory. In Figure 2-1, the directory
tree for UFD]1 is circled. An MFD directory path name consists of a
list of directories and passwords necessary to move down the tree from
the MFD to any directory. For example, the MFD path name for SUFDII
is:

REV. @ 30 - 78 May 1976

PTU3@ PART 2 PRIMOS FILE SYSTEM, REV. 13

MFD MFDPASSWORD > UFD] UFDIPASSWORD > SUFD11 UFD11PASSWORD

The ">" separates directories in the path-name and suggests that one is

proceeding down a tree structure. Note that file and directory names

can be as long as 22 characters (6 on old partitions), but passwords

can be at most 6 characters long.

An MFD directory path-name may optionally omit the MFD and mey

optionally include the logical disk number of the pack or the pack name

as shown below:

UFD] UFDIPASSWORD > SUFD11 SUFD11PASSWORD
< 1 > UFD] UFDIPASSWORD > SUFD11] SUFD11PASSWORD
< TSDISK > UFDIPASSWORD > SUFD11] SUFD]1PASSWORD

The logical disk number may optionally follow the first ufd as follows:

UFD]1 UFDIPASSWORD 1 > SUFD11]1 SUFD11PASSWORD

If no pack name or disk number is given, the logical disk referred to

is the lowest numbered logical disk in whose MFD UFD] appears. A user,

using the ATTACH or PRIMOS LOGIN command or the FUTIL ATTACH command

may specify a particular user-file-directory in the file structure as

the home-ufd. Additional FUTIL ATTACH commands may refer to either the

MFD or the home-ufd as the starting point. If the logical disk name is

specified as "*", the MFD of the current logical disk is scanned for

UFD1. Names of this form are referred to as absolute path names since

the location of the home UFD is not part of the name. A home-ufd

directory path name consists of a list of directories and passwords

necessary to move down the tree from the home-ufd to any directory

which has the home-ufd as the root. For example, if the home-ufd is

UFD1, the home-ufd path name to SUFD11 would be:

* > SUFD11 SUFDIIPASSWORD

"x" represents the home-ufd. The home-ufd path-name to UFD] is simply

"x". This form of tree name is also referred to as a relative path

name,

Whereas many users are familiar with user-file-directories, few are

familiar with a second type of directory called a segment directory. A

user-file-directory is e file which consists of a header and a number

of entries. Each entry consists of a] to 32 character filename (on

old partitions, names can be at most 6 characters long), protection

attributes of the file, and a disk record address pointer to the file.

A segment directory is a file consisting of as many as 65535 entries,

each entry being a disk record address pointer to the file. A 06

pointer indicates no file at that entry. To refer to a particular file

in a segment directory, a user must specifythe entry number of the
entry in the segment directory. A user specifies the position as an

unsigned entry number, enclosed in parentheses.

REV. @ 38 - 79 May 1976

PTU3@

REV. @

Figure 2-l.

PART 2

| DSKRAT

PRIMOS FILE SYSTEM, REV.

Sample File Structure

SUFD11

 OTT oT
DIRECTORY TREE

30

ROOT

MED BRANCH

UFDL UFD2

SUFD12 SUFD22

FILES FILEC

80

13

LEVEL

LEVEL

Ey |

May 1976

t
h

PTU20 PART 2 PRIMOS FILE SYSTEM, REV. 13

The first file is referred to as (9), the second as (1), the 440th file

as (439), and the 441st file as (448). The construction (entry number)
will be referred to as a segment directory filename. In FUTIL,
arguments to the commands are either user-file-directory filenames or
segment directory filenames depending on the directory type the file is
under. Furthermore, names typed on the LISTF command of FUTIL are of
either type depending on the directory type the file is under.

2.3 DESCRIPTION OF FUTIL COMMANDS

To invoke FUTIL, type FUTIL. When loaded, FUTIL types the ">" prompt
character and awaits a command string from the user terminal. To

terminate long operations such as LISTF, type CIRL P and restart FUTIL
at 1000. A user should type a command followed by a carriage return
and wait for the prompt character before typing the next command. The
erase character " and the kill character ? may be used to modify the
command string. In the following description of commands, underlined
letters represent the abbreviation of the command or argument. []
surround optional arguments. ...means the previous element may be
repeated.

* Indicates following information is a comment

QUIT return to PRIMOS Commar.! Mode

FROM directory-path-name
-_

where directory-path-name is of format

<LDISK> DIRECTORY [PASSWORD] [LDISK] > DIRECTORY [PASSWORD]...

or <DSKNAM>

or < * >

FROM defines the from-directory in which files are to be
searched for the commands COPY, COPYSAM, COPYDAM, DELETE,
LISTF, LISTSA, SCAN, CLEAN, PROTECT, TREPRO, UFDPRO,

TRECPY, TREDEL, UFDCPY, and UFDDEL. ‘The from-directory is
defined from the directory-path-name whose format is given
above and described in detail in Section 2.2. The
path-name may contain at most 1@ directories which may be
segment directories as well as user-file-directories. If
segment directories are specified, the user must have read
access rights to them. If any error is encountered, the
from—-directory is set to home-ufd (*). The first
directory in the path name may be "*" which refers to the

home-ufd. Thedefault from-directory is the home-ufd.
Note that the FROM command never changes the home-ufd. If
the FROM name is a relative path name (i.e. beginning
with *>), any future ATTACH’s, which do chance the

home-ufd, will reset the FROM name to *.

REV. @ 36 ~ 8) May 1976

PTU20

'3

REV. 8

PART 2 PRIMOS FILE SYSTEM, REV. 13

Examples:

FROM <@> CARLSON

Set from-directory to CARLSON on logical disk @. CARLSON
must be in the MFD on logical disk @ and have a blank
password.

FROM CARLSON ABC.

Search the MFD on all started disks for CARLSON in logical

disk order @ - 8. Set the from-directory to the first
CARLSON directory found. One of the passwords of CARLSON
must be ABC.

FROM <TSDISK> CARLSON > SUB1 > SUB2

Set the from-directory to SUB2. SUB2 must be a directory

in SUB1; SUBl must be a directory in CARLSON; and
CARLSON must be a dirctory in the MFD on a disk with pack
name TSDISK. CARLSON, SUB1, and SUB2 must have a blank
password.

FROM *

Set the from-directory to the home-ufd. The home-ufd is
normally the last ufd the user has logged into, or
attached to with either the ATTACH or FUTIL ATTACH

command. If logged into CARLSON, the above command sets
the from-directory effectively to CARLSON. ‘This command
does not have to be given again if the user changes the
home-ufd. Furthermore, this command does not have to be
given at all unless the from-directory has been made
something other than home, as home-ufd is the default.

FROM * > SUBI

Set the from-directory to SUB]. SUB] must be a directory
in the home-ufd and have a blank password.

directory-path-name

TO defines the to-directory in which files are searched
for the commands CREATE, COPY, COPYSAM, COPYDAM, TRECPY,
and UFDCPY. The to-directory is defined from the
directory-path-name. The path-name may contain at most 1@
directories which may be segment directories as well as
user-file directories. If segment directories are
specified, the user must have read and write access to
them. The first directory in the path-name may be *. The
default to-directory is the home-ufd. If any error is
encountered, the to-directory is set to home-ufd (*).

30 - 82 May 1976

ATTACH

COPY

REV. @

PART 2 PRIMOS FILE SYSTEM, REV. 13

Note that the TO command never changes the home-ufd. If

the TO name is a relative path name (i.e. beginning with

*>), any future ATTACH’s, which do change the home-ufd,

will reset the to-name to *.

directory-path-name

ATTACH moves the home-ufd to the directory defined by the

directory-path-name. The path name may contain at most 19

directories. The first directory in the path-name may be

*, All directories in the path-name must be

user-file-~directories. If segment directories are

specified within the path-name, a "BAD STRUCTURE" error

will be reported and the home-ufd will be set to the last

UFD specified in the path name before the error. An

attach command will reset relative "to" and "from" path

names to * but leaves absolute names alone.

FILEA [FILEB] [, FILEC [FILED]]...

Copy FILEA in the from-directory to FILEB in_ the

to-directory and optionally FILEC in the from—directory to

FILED in the to-directory. If FILEB is omitted, the new

file is given the same name as the old file. FILEA and
—S eS ee

R M_ or DAM files and cannot be directories. Read access

rights are required for FILEA and FILEC. If FILEB exists

prior to the copy, it must be a SAM or DAM file and have

read, write, and delete/truncate access rights. The file

type of FILEB will be made the same as FILEA.

Examples:

copy FILEA in the from-directory to FILEA in the

to-directory

COPY FILEA , FILEB , FILEC

Copy FILEA, FILEB, and FILEC in the from-directory to

FILEA, FILEB, and FILEC in the to-directory.

COPY FILEA FILEB

copy FILEA in from-directory to FILEB in to-directory

COPY FILEA] FILEA2,FILEB] FILEB2,FILEC] FILEC2

38 - 83 May 1976

PTU3@

COPYSAM

COPYDAM

TRECPY

REV.: @

PART 2 PRIMOS FILE SYSTEM, REV. 13

copy FILEA], FILEB1, and FILEC] in the from-directory to
FILEA2, FILEB2, and FILEC2 in the to-directory

COPY (@)

The from-directory and to-directory must each be segment
directories. Copy the file at position (@) of the
from—directory to position (@) of the to-directory. There
are no access rights attached to these files, so PRIMOS
checks instead the access rights of the directory. No
spaces are allowed in the name (@).

COPY (8) (1)

Copy the file at position (@) of the from-directory to
position (1) of the to-directory.

FILEA [FILEB] [, FILEC [FILED]]...

same as COPY but also set file type of FILEB and FILED to
SAM instead of copying the type of FILEA and FILEC.

FILEA [FILEB) [, FILEC FILED]]...

Same aS COPYSAM but set file type of FILEB and FILED to
DAM

DIRA [DIRB] [, DIRC [DIRD]]...

Copy the directory tree specified by directory DIRA to
directory DIRB and optionally DIRC to DIRD. DIRB and DIRD
must not previously exist. If DIRB is omitted, use name
DIRA as the directory to copy to. A directory tree
consist of all files and sub-directories that have their
root in that directory. DIRA and DIRC must be in the
from—directory. DIRB and DIRD are created in the
to-directory. Read access rights are required for DIRA
and DIRC and all files or sub-directories within them.
The restriction on sub-directories can be overridden with
the FORCE command.

DIRB and DIRD are created with the same directory type and
passwords as DIRA and DIRC and with default access rights.
The names, access rights and passwords of all files and
sub-directories copied are also copied.

Example:

FROM MFD
TO MFD
TRECPY CARLSON CARNEW

38 - 84 May 1976

UFDCPY

CREATE

REV. @

PART 2 PRIMOS FILE SYSTEM, REV. 13

copy the directory tree specified by CARLSON in the MFD to
anew directory CARNEW in the MFD

Copy all files and directory trees from the from-directory
to the to-directory. The user must have owner rights in

the FROM directory. Furthermore, all files and
directories in the from-directory, as well as all

sub-directories and the files within them, must have read

access rights. This restriction on sub-directories can be

overridden with the FORCE command. Files already existing

in the to-directory with names identical to those in the

from-directory are replaced. Files that are replaced must

have read, write, and delete accesss rights.

Segment directories already existing in the to-directory

with names identical to those in the from-directory are

not allowed and will not be copied. Files and directories

created in the to-directory will have the same file type

and access rights as the old files. If a file or UFD in

the to-directory has the same name as a file or UFD in the
from—directory, the access rights must permit read, write,

and truncate/delete. When the copy is finished, the new

file will have the same protection attributes as the

corresponding file in the from-directory. The names,

access rights and passwords of all files and
sub-directories within directory trees being copied are
also copied. Other existing files and directories in the
to-directory are not affected. UFDCPY is effectively a

merge of two directories including merging sub-UFD's.
Both the from and the to-directory must be user-file
directories.

Example:

FROM CARLSON
TO CARNEW
UFDCPY

copies all files and directories from CARLSON in the MFD

to CARNEW in the MFD. Note that unlike the example for

TRECPY, the user has not specified the MFD as_ the
from—directory, therefore, does not need to know the MFD

password. In the example CARNEW exists prior to the

UFDCPY. With TRECPY, CARNEW does not previously exist.

UFDNAME [OWNERPASSWORD [NONOWNERPASSWORD]]

38 - 85 May 1976

PTU30 PART 2 PRIMOS FILE SYSTEM, REV. 13

Creates a UFD in the "TO" directory with the owner and
non-owner passwords specified. A UFD of the same name
cannot already exist in the "to" directory. If a password
is not specified, it will be set to 6 blanks. If a
password is specified - longer than 6 characters, only the
first 6 will be used. The access rights of the new UFD
will be the default rights assigned by PRIMOS.

DELETE FILEA [FILEB] ...

delete FILEA and optionally FILEB from the from-directory.
FILEA and FILEB cannot be directories. The user must have
read, write and delete access rights to each file. If
FILEA and FILEB are in a segment directory, read, write
and delete access rights are required for the
from-directory.

Examples:

DELETE FILEA

DELETE FILEA FILEB FILEC FILED

TREDEL DIRA [DIRB] ...

delete the directory tree specified by directory DIRA and
optionally delete DIRB from the from-directory. DIRA and
DIRB must be directories. The user must have read, write,
and delete rights to DIRA and DIRB. Read, write and
delete rights are not required for files and
sub-directories nested within DIRA or DIRB. If FILEA and
FILEB are in a segment directory, read, write, and delete
access rights are required for the from-directory. Note
that the operating system DELETE command will not delete a
directory on a new partition if it is not empty.

UFDDEL

delete all files and directory trees within the
from-directory. User must give the owner password in the
FROM command and have read, write, and delete access to
all files and directories within the from—directory.
These rights are not required for files and
sub-directories nested within the directories in the
from—-directory. Note that read and write access rights to
a sub-UFD are sufficient to delete the contents of that
directory, but not the directory itself.

LISTF

=

[level] [LSTFIL] [PROTECT] [SIZE] [TYPE] [DATE] [PASSWORDS]
[FIRST]

REV. @ 38 - 86 May 1976

REV. Qg

PART 2 PRIMOS FILE SYSTEM, REV. 13

List the from directory-path-name, the to

directory-path name, and all files and directory trees in

the from-directory on the terminal. Optionally, follow
each file by its protection attributes, size in disk
records (mod 448 words), file type, date/time modified

(DIM), and, on directories, the owner and non-owner

passwords. The user must give the owner password in

specifying the from-directory. If the LSTFIL option is
given, the list of files is sent to file "LSTFIL" in the
home-ufd instead of to the terminal. At a later time, a
user may wish to print that file on a line printer. Level

is a number specifying the lowest level in the

from-directory tree structure to be listed. The following

table describes the output:

level output

0B the "from" and "to" directory names

1 the from-directory and all files and
directories within it (level 1 directories)

2 all output at level 1 and all files
and directories within level 1 directories

etc. etc.

If the level is omitted, the default is 1.

The protection attribute of each file is typed as:

< owner-key non-owner-key >

The keys are number 9-7 with the following meaning:

no access allowed
read access only
write access only
read and write access
delete/truncate only
delete/truncate and read
delete/truncate and write

all access allowedS
O
U
S
W
H
F
&

The possible file types are:

SAM for sam file
DAM for dam file
SEGSAM for sam segment directory
SEGDAM for dam segment directory
UFD for user file directory

30 - 87 May 1976

PTU26

REV. 0

PART 2 PRIMOS FILE SYSTEM, REV. 13

On new partitions, the DIM of a file or directory is
printed as:

15:31:22 MON 68 NOV 1976

where 15:31:22 is 15 hours past local midnight (3PM), 21
minutes, 22 seconds. The day of the week printed will be
correct for all dates between] January 1972 through 21
December 2071. If the date is unreasonable (e.g. when SE
~8808 -@080 is typed at the system console), the DIM is
not printed. All dates are considered reasonable as long
as the month is between 1 and 12. Note that the day of
the week will be correct for dates such as 32 December and
® April since they will be considered as 1 January and 31
March, respectively.

The passwords on sub-directories are printed as: (OWNER,
NOWNER). Note that non-printing characters are suppressed
rather than replaced by blanks or printed on the user
terminal although they will be sent to an output file
(LSTFIL). Thus, the default passwords on a UFD are
printed as (,) Since the non-owner password is @,
not blanks. Similarly, a password of CNTRL (UFD) would be
printed as (’) and written to a file as
("225°206°204 =,).

The FIRST line option specifies that all files not beginning
with * (the usual conversion for run files) and B_ (the
usual conversion for PMA and FIN object files) are to have
their first lines printed. If the file is not an ASCII
file and the name does not begin with * or B , the comment
"NO FIRST LINE" will be printed. First lines are preceded
by ":" and will be placed on the same line as the file
and its options, if it will fit. LISTF traverses the file
structure as shown by the snaked line generating typeout
at the various points below.

30 - 88 May 1976

PTU3¢ PART 2 PRIMOS FILE SYSTEM, REV. 13

The output with level set to 3 and with the SIZE option

will appear as follows for the above file structure:

FROM-DIR = MFD
TO-DIR =*

BEGIN MFD 1

DSKRAT 1 BOOT]

BEGIN UFD1 1

BEGIN SUFD11] 1

FILEA 1

END SUFD11
BEGIN SUFD12 h

m
N
O

FILEB 1

END SUFD12 2
END UFD1
BEGIN UFD2
BEGIN SUFD21 2

h
n

FILEC 1

END SUFD21 2

END UFD2 3
END MFD ll

Note that the user must have read access rights to all

files, sub-directories, and files within sub-directories.

This restriction can be overridden with the FORCE command.

LISTF, upon encountering a directory, prints the word BEGIN

followed by the name of the directory and its size in

records. On leaving a directory, LISTF prints "END

Directoryname" followed by the number of records used by

all files and directories within the directory tree headed

by the directory file. On encountering a file, LISIF

simply prints its name and size, squeezing as many files

as will fit on each line. LISTF skips a line whenever a

directory follows a file or a file follows a directory.

LISTF will not count records in files lower than "level"

in the from-directory tree. In addition, DAM file indices

will not be included in the size.

REV. @ 38 - 89 May 1976

PTU38@

LISTSAVE

CLEAN

REV. Q

PART 2 PRIMOS FILE SYSTEM, REV. 13

In the above example, the number following MFD, 11, is the
total number of records used by the MFD directory tree and
consists of all files and directories on the disk pack.
LISTIF indents the printed output one Space for each level
down the tree in which the directory is located. This
format makes it easy to understand the relationship of
each directory to other directories in the tree.

fname [level] [PROTECT] [SIZE] [TYPE] [DATE] [PASSWORDS]
[FIRST]

This command is identical to LISTF with the LSTFIL option
specified except the output file will be named "fname"
rather than "LSTFIL" and the LSTFIL option is redundant.

fname [level] [PROTECT] [SIZE] [TYPE] [DATE] [PASSWORDS][LSTFIL] [FIRST] ~ _

This command is used to search the from-directory tree for
the occurance of all files, Sub-UFD°s, and segment
directories named "fname". If level is specified as]
(the default), only the file name will be printed,
followed by its options. If the level is greater than 1,
the path name to the file or directory, starting from the
from—-directory, is printed, followed by the file name and
its options. For example, with the tree-structure shown
for the LISTF example, the command SCAN FILEB S F 10 will
print:

FROM=MFD
TO =*

DIRECTORY PATH = MFD> UFD1> SUFD12

FILEB 1 : NO FIRST LINE

FILEB lacks a first line since it was empty. Note that
the name FILEB is indented 3 spaces since it is in a third
level UFD.

prefix [level]

This command is a conditional delete based upon a prefix
match. If a file name begins with the characters
Specified as "prefix", the file will be deleted. If level
is specified greater than 1, that many levels of sub-UFD’s
will be scanned for prefix matches. In no case, will
CLEAN delete a UFD or a segment directory. In the example
tree structure used for LISTF and SCAN, the command:
CLEAN F will not delete anything since no files beg inning
with F exist in MFD. However, the command: CLEAN F 1g
will delete ,n-3@0 FILEA, FILEB, and FILEC since they all
begin with F. Note that: CLEAN U will not delete either

30 - 98 May 1976

PTU3¢ PART 2 PRIMOS FILE SYSTEM, REV. 13

UFD1, UFD2, or any of the files within them. A typical

usage of CLEAN would be:

CLEAN L_
CLEAN B_

To delete binary and listing files from a UFD.

PROTECT fname [owner [non-owner]]

Will protect "fname" in the from-directory with the

owner and non-owner protection attributes [defined

under LISTF] specified. If the non-owner rights are

omitted, they will be set to @. If the owner rights

are omitted, they will be set to 1 (read only).

"Ename” can be a file, a UFD, or a segment directory.

If it is a UFD, the file and sub-directories within

it will not be protected.

TREPRO tree-name [owner [non-owner]]

This command is essentially the same as

_

protect

except "treename" is a UFD or segment directory in

the from-directory and it and all files under it

(UFD’s only} will be protected with the specified

rights. Again, the default rights are <] @>.

UFDPRO [owner [non-owner [levels]]]

This command is used to protect all files and

directories within the from-directory with the

specified rights, going down sub-UFD_ trees the

specified number of levels. The default rights are

<1 @> and the default level is 1. Thus, in the

example structure of LISTF, SCAN, and CLEAN, the

command: UFDPRO will protect the files DSKRAT and

BOOT and the UFD’s UFD] and UFD2 with access rights

<1 @> and will not change the rights of any of the

sub-directory UFD’s or files. ‘The command: UFDPRO 1

@ 1G will protect all files and directories within

MFD. Note that both the owner and non-owner rights

must be specified in order to specify the number of

levels.

FORCE ON

or OFF

As noted previously, LISTF, LISTSAVE, SCAN, UFDCPY,

and ‘TRECPY will not force read access rights on any

files or sub-directories within the from-directory.

This is to prevent the updating of DIM’s of copied

files as well as permitting these commands to

operated on write protected disks. The price of this

REV. @ 30 - 91 May 1976

PTU30 PART 2 PRIMOS FILE SYSTEM, REV. 13

capability is that all files to be listed or copied
must have read access. ‘To override this restriction,
the command FORCE ON must be specified. This will
cause read access rights to be forced, but will also
cause L“STF, LISTSAVE, SCAN, UFDCPY, and TRECPY to
fail on write-protected disks. The option remains in
force until the command: FORCE OFF is specified.
Note that UFDCPY will never force rights on the
primary level of either the from or to-directory.

2.4 RESTRICTIONS

FUTIL cannot process user-file-directory filenames that contain the
characters ncn ; ") " ; nen , Wyn , a a ; "ye , OL om Avoid using

filenames containing these characters.

In using FUTIL under PRIMOS, certain operations may interfere with the
work of other users. For example, a UFDCPY command to copy all files
from a ufd currently used by another logged-in user may fail. If any
file in that directory is open for writing by that user, UFDCPY will
encounter the error FILE ALREADY OPEN, and will skip the file. If the
user attempts to open one of his files for writing while UFDCPY is
running, the user may encounter that errror. The FUTIL LISTF and
TRECPY commands cause the same interaction problems. Other FUTIL
commands such as COPY and DELETE can also interfere with the other
user, but the problem is not as serious as only one file is potentially
involved in a conflict. To prevent the conflicts, users working
together and involved in operations using each other’s directory should
coordinate their activities. If two users consistently use the same
ufd at the same time, they should avoid the FUTIL LISTF command, and
use the system LISTF command instead.

FUTIL operations when using the MFD should be done carefully. Never
give the command TREDEL MFD as the command will delete every file on
the disk except the MFD, DSKRAT, BOOT, and BADSPT. A LISTF or UFDCPY
of the MFD should be done only if one is sure no other user is using
any files or directories on that disk. A UFDCPY of the MFD to the MFD
of another disk has the effect of merging the contents of two disks
onto one disk. A user should be sure there is enough room on the
to-disk before attempting this operation or it will abort. Recall also
that the names of segment directories on the two disks may not
conflict. Files of the same name will be overwritten and UFD’s of the
Same name will be merged. To avoid the name conflict, it may be
desirable to UFDCPY the MFD of one disk into a user-file-directory on
another disk. Each directory Originally on the from-disk becomes a
subdirectory in that ufd on the to-disk. For example, the contents of
1@ diskettes could be copied into 1@ user-file—directories on a 15M
disk pack. Note that a UFDCPY of an MFD does not copy the DSKRAT, MFD,
BOOT or BADSPT to the to-directory. If a user wishes to copy BOOT to
the to-directory, use the COPY command. Never copy the DSKRAT or the

REV. @ 38 - 92 May 1976

PTU26 PART 2 PRIMOS FILE SYSTEM, REV. 13

BADSPT file from one MFD to another.

the effect of a UFDCPY from the MFD of a disk in use to the MFD of a

newly MAKE “d disk is to reorganize the disk files so that all files are

compacted, that is, have their records close to each other on the new

disk. After such a compaction, the access time to existing files on

the new disk is effectively reduced from the access time on the old

disk. Furthermore, new files tend to be compact since all free disk

records are also compacted. The use of such compacted disks should

improve the performance of all PRIMOS systems.

Users should not abort copy or delete operations under DOS, but should

allow them to run to completion. Aborting a copy or delete operation

may cause a pointer mismatch or bad file structure or a directory with

a partial entry. DOS or PRIMOS will not run correctly with a directory

with a partial entry. FIXRAT should be run immediately if these

conditions are encountered. Under PRIMOS III and PRIMOS_ IV,

interruption of FUTIL with Control-P will never result in a bad file

structure.

2.5 ERROR MESSAGES

The following are error messages generated by FUTIu. In many cases,

FUTIL types error messages generated by DOS or PRIMOS and retains

control, so users should be generally familiar with operating system

error messages. The list given here includes those messages that may

be encountered by FUTIL. Most messages are preceded by a file name

identifying the file causing the error. Some of the error messages

have the format:

reason for error

FILE = filename

DIRECTORY PATH = directory-path-name

In all cases except "DISK FULL" on copies, FUTIL will continue with the

operation, reporting all errors as it goes until the operation is

complete.

?

Unrecognizable command

ALREADY EXISTS or SEG DIR ALREADY EXISTS

An attempt has been made to TRECPY to or CREATE a UFD or segment

directory that already exists. Or UFDCPY has attempted to copy a

segment directory which already exists. If you intend to do the

operation, the UFD or segment directory in the to-directory must first

be deleted.

REV. @ 36 - 93 May 1976

PTU3@ PART 2 PRIMOS FILE SYSTEM, REV. 13

ALREADY OPEN

Indicates an attempt to UFDCPY a directory to itself or an attempt to
copy a file to itself, or an attempt to copy a directory to a
subdirectory within itself.

BAD NAME

A segment directory filename was given to a command which expected a
ufd filename or vice versa. The type of filename must match the type
of directory the file is contained in.

BAD PASSWORD

An incorrect password has been given in a FROM, TO, or ATTACH command.
PRIMOS will not allow FUTIL to maintain control in case of a bad
password so the FUTIL command must be given to restart FUTIL after the
user has attached to his directory. The from-directory and
to-directory are reset to home-ufd in this case.

BAD SYNTAX

The command line processed by FUTIL is incorrect.

CANNOT ATTACH TO SEGDIR

The last directory in the directory path name to an ATTACH command is a
segment directory. It must be a ufd, as ATTACH sets the home-ufd to
the last directory in the path.

CANNOT DELETE MFD

User has given the UFDDEL command while attached to the MFD. This is
not allowed.

STRUCTURE TOO DEEP

Directories may be nested to a depth of 10@ levels. User has attempted
to exceed this limit. Under 32K PRIMOS II, this limit is dynamically
reduced to 13 levels.

DISK ERROR

Same as unrecovered error.

DISK FULL

The disk has become full before FUTIL has finished a copy operation.
For operations involving many files, some files are not copied,
creating only partially copied directories which may be of limited use.
It is suggested that the user delete such a Structure immediately to
prevent confusion as to what has been copied.

REV. @ 36 - 94 May 1976

PTU26 PART 2 PRIMOS FILE SYSTEM, REV. 13

IN USE

Indicates a FUTIL attempt to process a file in use by some other user.

It may also indicate an attempt to copy a directory to a subdirectory

within itself.

BAD STRUCTURE

Indicates any of various conditions in which the implied or explicitly

specified structure is illegal. For example, an attempt to specify a

UFD under a segment directory will cause this error.

CANNOT COPY FILE TO DIRECTORY

On UFDCPY, indicates a file on the "from" side has the same name as a

directory on the "to" side.

NO RIGHT

User has attempted an operation on a file which violates the file

access rights assigned to that file. These rights may be changed by

the PROTECT command, if the user has given the owner password on

ATTACH.

NO UFD ATTACHED

Self-explanatory.

NOT A DIRECTORY

User has given a directory-path-name which includes a regular file.

NOT FOUND

Self-explanatory

POINTER MISMATCH

Indicates a bad file structure. Running FIXRAT is in order.

END OF FILE

User has attempted to reference a nonexistent file beyond the end of a

segment directory.

NOT FOUND IN SEG-DIR

User has attempted to reference a file in a segment directory with an

entry of 6, which indicates file does not exist or the user has

attempted to reference a file past the end of the segment directory.

REV. 8 38 - 95 May 1976

PTU3O | PART 2 PRIMOS FILE SYSTEM, REV. 13

UFD FULL

On a UFDCPY merge or a UFDCPY or TRECPY from a new partition to an old
partition, the to-directory or a sub-directory has become full. FUTIL
will report the error and then pop-up a level and continue as if the
UFD had not become full.

UNRECOVERED ERROR

Indicates either the user has attempted to write to a write-protected
disk or an actual disk error or a FUTIL attempt to process a bad file
structure. Running FIXRAT is in order if the disk was not
wr ite—protected.

TOO MANY NAMES

A "from", "to" or "attach" tree name was specified with more than 16
names.

WRONG FILE TYPE

An attempt was made to DELETE or copy a directory or TREDEL, TRECPY or
TREPRO a file.

CANNOT ATTACH

An attempt is made to UFDCPY a directory in which a sub-ufd has the
Same name as a file or segment directory on the "to" side. The "from"
side UFD is skipped.

REV. @ 36 - 96 May 1976

PRIME
PRIME Computer, Inc., 145 Pennsylvania Avenue, Framingham, Massachusetts 01701

	001
	002
	003
	PTU30-01
	PTU30-02
	PTU30-03
	PTU30-04
	PTU30-05
	PTU30-06
	PTU30-07
	PTU30-08
	PTU30-09
	PTU30-10
	PTU30-11
	PTU30-12
	PTU30-13
	PTU30-14
	PTU30-15
	PTU30-16
	PTU30-17
	PTU30-18
	PTU30-19
	PTU30-20
	PTU30-21
	PTU30-22
	PTU30-23
	PTU30-24
	PTU30-25
	PTU30-26
	PTU30-27
	PTU30-28
	PTU30-29
	PTU30-30
	PTU30-31
	PTU30-32
	PTU30-33
	PTU30-34
	PTU30-35
	PTU30-36
	PTU30-37
	PTU30-38
	PTU30-39
	PTU30-40
	PTU30-41
	PTU30-42
	PTU30-43
	PTU30-44
	PTU30-45
	PTU30-46
	PTU30-47
	PTU30-48
	PTU30-49
	PTU30-50
	PTU30-51
	PTU30-52
	PTU30-53
	PTU30-54
	PTU30-55
	PTU30-56
	PTU30-57
	PTU30-58
	PTU30-59
	PTU30-60
	PTU30-61
	PTU30-62
	PTU30-63
	PTU30-64
	PTU30-65
	PTU30-66
	PTU30-67
	PTU30-68
	PTU30-69
	PTU30-70
	PTU30-71
	PTU30-72
	PTU30-73
	PTU30-74
	PTU30-75
	PTU30-76
	PTU30-77
	PTU30-78
	PTU30-79
	PTU30-80
	PTU30-81
	PTU30-82
	PTU30-83
	PTU30-84
	PTU30-85
	PTU30-86
	PTU30-87
	PTU30-88
	PTU30-89
	PTU30-90
	PTU30-91
	PTU30-92
	PTU30-93
	PTU30-94
	PTU30-95
	PTU30-96
	xBack

